期刊文献+

基于改进YOLOv5的城市地下管网缺陷识别算法

Defect Recognition Method of Urban Underground Pipe Network Based on Improved YOLOv5 Algorithm
下载PDF
导出
摘要 城市地下管网系统作为保障城市排涝安全的重要市政基础设施,在长期超负荷运行过程中普遍存在着诸多病害问题;传统检测技术CCTV依赖专业人员的专业技术以及先验经验,因此为实现自动化的城市地下管网缺陷病害,一种城市管网缺陷病害检测算法被提出并成功运用于实际工程中;采用自适应CA注意力机制,有效弱化复杂背景的负面影响;缺陷分类与回归的解耦关键方法,使得检测部分充分利用缺陷纹理和边缘信息,从而提高小尺寸缺陷的精度;SIoU损失函数的运用为算法引入角度项权衡,有效加快收敛速度;经实验测试得到71.1%的平均精确度,较原始算法提高5.3%,并满足了实际工程上的应用。 As an important municipal infrastructure for ensuring urban drainage safety,urban underground pipe network systems commonly suffer from many disease problems during long-term overload operation.The traditional detection technology CCTV relies on professional skills and prior experience of professionals.Therefore,in order to realize automated urban underground pipe network defects and diseases,an urban pipe network defect and disease detection algorithm is proposed,which is successfully used in actual projects.The adaptive CA attention mechanism is adopted to effectively weaken the negative impact of complex backgrounds;the key method of decoupling defect classification and regression enables the detection part to make full use of defect texture and edge information,thereby improving the accuracy of small-sized defects;The SIoU loss function provides the algorithm for the balance of angle,effectively speeding up the convergence.After experimental testing,this algorithm reaches an average accuracy of 71.1%,its average accuracy is 5.3%higher than that of the original algorithm,and it satisfies practical engineering application.
作者 完颜健飞 江雅馨 徐晓龙 常明 黄英 WANYAN Jianfei;JIANG Yaxin;XU Xiaolong;CHANG Ming;HUANG Ying(The second Construction Co.,Ltd.of 7th Division CSCEC,Suzhou 215300,China;School of Information Science and Engineering,Hohai University,Changzhou 213002,China)
出处 《计算机测量与控制》 2024年第11期258-264,共7页 Computer Measurement &Control
基金 住房和城乡建设部2022年科学技术计划项目(2022-K-165) 中国建筑第七工程局有限公司局课题(CSCEC7b-2022-Z-5)。
关键词 YOLOv5 地下排水管道 缺陷识别 注意力机制 目标检测 YOLOv5 algorithm underground drainage pipe defect recognition attention mechanism target detect
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部