摘要
针对球笼防尘罩的小口内部毛刺缺陷人工质检效率低的问题,提出了一种基于图像处理的实时缺陷检测方法来使质检过程自动化,从而提高生产效率。首先,通过一系列无参数化的图像预处理方法使原始图像满足边缘提取的条件。接着,使用启发式的边缘搜索算法得到小口内部边缘坐标。之后通过最小二乘算法拟合出椭圆参数方程,从而计算得到相似点坐标。最后通过图像边缘与拟合椭圆的相似度来判定物料是否存在小口内部毛刺缺陷。最终实验结果表明,该算法在实际采集的测试数据集中的检测准确率为100%,并且完全可以实现对小口内部毛刺缺陷的实时检测。
A real-time defect detection method based on image processing is proposed to address the low efficiency of manual inspection for intemal burr defects in the small opening of automobile constant velocity joint boots,thereby automating the quality inspection process and improving production fficiency.First,a series of non parametrie image preprocessing methods are applied to ensure that the original image meets the conditions for edge extraction.Second,a heuristie edge search algorithm is used to obtain the intermal edge coordinates of the small opening.Third,the least squares algorithm is employed to fit an ellipse parametric equation,which is then used to calculate the coordinates of matching points.Finally,the presence of intemal bur defects in the material is determined by comparing the similarity between the image edges and the fited ellipse.The experimental results show that the algorithm achieves a 100%detection accuracy on the actual test dataset,and it fully enables real-time detection of internal burr defects in the small opening.
作者
苏连成
李佳伟
丁伟利
SU Liancheng;LI Jiawei;DING Weili(School of Eletrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China;Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处
《燕山大学学报》
CAS
北大核心
2024年第6期511-518,共8页
Journal of Yanshan University
基金
河北省自然科学基金重点项目(F2021203054)
河北省创新能力提升计划项目(22567619H)。
关键词
缺陷检测
图像处理
椭圆检测
最小二乘算法
defect detection
image processing
ellipse detection
least squares