期刊文献+

基于PSO-Attention-LSTM算法的煤电脱硫脱硝运行状态预测方法

Method forpredicting the operation status of coal electricity desulfurization and denitration based on PSO-Attention-LSTM algorithm
原文传递
导出
摘要 煤电脱硫脱硝的正常运行对电力系统的安全稳定有着重要影响,但是传统预测方法存在准确率不高的问题,因此提出一种改进PSO-Attention-LSTM的煤电脱硫脱硝运行状态预测方法。首先,建立优化煤电脱硫脱硝运行状态的主要指标及其权重指标,在数据输入阶段,通过PSOAttention-LSTM获取运行状态数据相关的时空特征,对煤电脱硫脱硝运行状态作出预测,完成煤电脱硫脱硝潜在性故障的预警信息。试验结果显示,该预测方法对煤电脱硫脱硝运行状态的预测精度在84%,能够较好准确预测煤电脱硫脱硝的运行状态,可用于煤电脱硫脱硝运维管理的参考辅助。 The normal operation of coal-fired desulfurization and denitrification has a significant impact on the safety and stability of the power system.However,traditional prediction methods have the problem of low accuracy.An improved PSO-Attention LSTM method for predicting the operational status of coal-fired desulfurization and denitrification is proposed.Firstly,establish the main indicators and their weight indicators for optimizing the operation status of coal-fired power desulfurization and denitrification.In the data input stage,obtain the spatiotemporal characteristics related to the operation status data through PSO-Attention LSTM,predict the operation status of coalfired power desulfurization and denitrification,and complete the warning information of potential faults in coal-fired power desulfurization and denitrification.The experimental results show that the prediction accuracy of this prediction method for the operational status of coalfired power desulfurization and denitrification is 84%,which can effectively and accurately predict the operational status of coal-fired power desulfurization and denitrification.It can be used as a reference assistance for the operation and maintenance management of coal-fired power desulfurization and denitrification.
作者 侯深 祝业青 李祥 潘云 HOU Shen;ZHU Yeqing;LI Xiang;PAN Yun(Guodian Environmental Protection Research Institute Co.,Ltd,Nanjing 210000,China)
出处 《煤炭经济研究》 2024年第8期60-64,共5页 Coal Economic Research
关键词 煤电脱硫脱硝 状态预测 粒子群优化 注意力机制 长短期记忆网络 coal electric desulfurization and denitrification state prediction PSO attention mechanism LSTM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部