期刊文献+

基于YOLOv8的居家环境跌倒行为识别

Fall Behavior Recognition in Home Environment Based on YOLOv8
下载PDF
导出
摘要 对于现有跌倒行为识别算法在复杂的居家环境条件下,出现算法精度低、实时性差等问题,文章提出一种基于YOLOv8的居家环境跌倒行为识别方法。该方法通过网络摄像头获取视频图像,使用基于YOLOv8的目标检测算法识别监控视频中每一帧画面的人体与跌倒特征,再结合时序状态特征处理,设定规则判别跌倒行为,并进行跌倒预警。实验证明,改进的方法精确率达94.9%,召回率达95.7%,FPS为40,算法识别准确率高、实时性强,为跌倒行为识别提供了一种简单而有效的方法。 For the algorithm problems of low accuracy and poor real-time performance of existing fall behavior recognition algorithms in the complex home environment conditions,this paper proposes a fall behavior recognition method in home environment based on YOLOv8.This method obtains video images from webcams,uses object detection algorithm based on YOLOv8 to identify the human body and fall features in each frame of surveillance video,and then combines the processing of sequential state features to set rules to identify fall behaviors and conduct fall warning.The experimental results show that the precision rate of the improved method is 94.9%,the recall rate is 95.7%,and the FPS is 40.The algorithm has high recognition accuracy and strong real-time performance,which provides a simple and effective method for fall behavior recognition.
作者 岳丽云 欧剑港 陈国豪 方思学 施辰光 YUE Liyun;OU Jian'gang;CHEN Guohao;FANG Sixue;SHI Chenguang(Guangdong Branch of China United Network Communications Co.,Ltd.,Guangzhou 510627,China)
出处 《现代信息科技》 2024年第21期29-34,共6页 Modern Information Technology
关键词 YOLOv8 居家环境 目标检测 跌倒特征 跌倒行为识别 YOLOv8 home environment object detection fall feature fall behavior recognition
  • 相关文献

参考文献11

二级参考文献117

  • 1ZHU Yongsheng ZHANG Youyun.A new type SVM——projected SVM[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):21-28. 被引量:1
  • 2周顺福,宋桂香,李延红,喻彦,周德定.老年妇女跌倒性伤害的预防与控制[J].上海预防医学,2005,17(3):113-115. 被引量:27
  • 3郝燕萍,刘雪琴,靳海如.老年人跌倒致伤情况分析[J].护理研究(上旬版),2006,20(8):2017-2018. 被引量:44
  • 4吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 5李声飞.基于WSN的穿戴式人体姿态与健康监护系统的研制[D].重庆:重庆大学,2010.
  • 6Xoury N,Riuneau P,Bourke A K,et al.A proposal for the classification and evaluation of fall detectors[J].IRBM,2008,29(6):340-349.
  • 7Rougier C,Meunier J,St-Arnaud A,etal.Monocular 3D head tracking to detect falls of elderly people[J].Conf Proc IEEE Eng Med Biol Soc,2006,1(1):6 384-6 387.
  • 8Vaidehi V,Ganapathy K,Mohan K,et al.IEEE-International Conference on Recent Trends in Information Technology,Chennai,June3-5,2011[C].USA:IEEE,2011.
  • 9Chua J L,Chang Y C,Lim W K.2013 International Conference on Multimedia,Signal Processing and Communication Technologies,Aligarh,November 23-25,2013[C].USA:IEEE,2013.
  • 10刘海亮,杨艾琳.一种基于热释电红外的跌倒检测系统:中国,201110202549.5[P].2011-12-21.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部