期刊文献+

金属海绵阻力特性数值计算

Numerical calculation on resistance characteristics of metal foam
原文传递
导出
摘要 采用体心立方结构和Kelvin结构重建金属海绵的胞体结构,分析比较了单相流和两相流下金属海绵内部阻力、不同切角时金属海绵内部阻力。结果表明:①体心立方结构能够达到的孔隙率e的范围为68.01%<e<98.01%;而Kelvin结构能够达到的孔隙率的范围为72.1%<e<98.7%;②油滴质量分数为9.1%、进口速度小于20 m/s时,两相流计算的压降比单相流计算的压降高约5%;③切向角为30°的Kelvin结构金属海绵与实际金属海绵的阻力特性一致性较高,能够较好地表征金属海绵的阻力特性。 The cell structure of the metal foam was reconstructed using the body-centered cubic structure and Kelvin structure,respectively,and the internal resistances of the metal foam under singlephase flow and two-phase flow at different cutting angles were analyzed and compared.The results showed that:1)the body-centered cubic structure can achieve a porosity e range of 68.01%<e<98.01%;while the Kelvin structure can achieve a porosity range of 72.1%<e<98.7%;2)the pressure drop calculated by two-phase flow was about 5%higher than that calculated by single-phase flow when the mass fraction of oil droplets was 9.1%and the inlet velocity was less than 20 m/s;3)the resistance characteristics of the Kelvin structure metal foam with a cutting angle of 30°were in high agreement with those of the actual metal foam,and can better characterize the resistance characteristics of the metal foam.
作者 张丽芬 葛鑫 胡兴龙 韦瑞荣 余邦拓 刘振侠 ZHANG Lifen;GE Xin;HU Xinglong;WEI Ruirong;YU Bangtuo;LIU Zhenxia(School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;Key Laboratory of Power Transmission Technology on Aero-engine,Aero Engine Corporation of China,Shenyang 110015,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2024年第10期12-20,共9页 Journal of Aerospace Power
关键词 金属海绵 阻力特性 体心立方结构 Kelvin结构 离心通风器 metal foam resistance characteristics body-centered cubic structure Kelvin structure centrifugal ventilator
  • 相关文献

参考文献6

二级参考文献83

  • 1Maxwell J C. A Treatise on Electricity and Magnetism. Oxford: Clarendon Press, 1873:365.
  • 2Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos Mag, 1892, 34.. 481.
  • 3Hunt M L, Tien C L. Effects of thermal dispersion on forced convection in fibrous media. Int J Heat Mass Transfer, 1988, 31 (2) ; 301.
  • 4Tien C L, Vafai K. Statistical bounds for the effective thermal conductivity of microsphere and fibrous insulation. AIAA Prog Ser,1979, 65:135.
  • 5Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams. ASME J Heat Transfer, 1999, 121:466.
  • 6Boomsma K, Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal, lnt J Heat Mass Transfer, 2001, 44:827.
  • 7Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foams. Int J Heat Mass Transfer,2002, 45:1017.
  • 8Calimidi V V, Mahajan R L. Forced convection in high porosity metal foams. ASME J Heat Transfer,2000, 122:557.
  • 9Zhao C Y, Kim T, Lu T J, et al. Thermal transport in high porosity cellular metal foams. J Thermophys Heat Transfer, 2004, 18(3): 309.
  • 10Lu W, Zhao C Y, Tassou S A. Thermal analysis on metal-foam filled heat exchangers part I: Metal-foam filled pipes. Int J Heat Mass Transfer, 2006, 49(15/16): 2751.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部