期刊文献+

基于多核监督流形学习的旋转机械故障诊断

Fault diagnosis of rotating machinery based on multi-kernel supervised manifold learning
原文传递
导出
摘要 为了准确地对旋转机械进行故障诊断,提出了一种多核监督流形学习算法(multi-kernel supervised manifold learning,MKSML)。MKSML算法可以有效地对高维故障数据进行特征选择,筛选出区分度高的低维故障特征。借助监督学习的思想,增强了同类样本的聚集性和不同类样本之间的差异性;同时基于所设计的多核函数提出了加权邻域图构建方法,能够保留近邻点之间的距离信息和角度信息,有效地抑制故障特征选择时样本中的异常值和噪声的干扰。通过灰狼优化算法调整MKSML算法相应的参数,使算法能够应用于不同类型的旋转机械故障诊断。在此基础上,建立了一种基于MKSML算法的旋转机械故障诊断模型,并进行了轴承故障诊断实验以及齿轮故障诊断实验。 In order to accurately perform fault diagnosis for rotating machinery,a multi-kernel supervised manifold learning(MKSML)algorithm was proposed.More specifically,MKSML algorithm allowed to effectively select the features of high-dimensional fault data,and extract the low-dimensional fault features with better discrimination.Through the idea of supervised learning,the clustering of similar samples and the differences between various samples have been enhanced.A novel weighted neighborhood graph was proposed by constructing multi-kernel function.The distance information and angle information between adjacent points were retained.And the interference of outliers and noise in the sample was suppressed.Through the gray wolf optimization algorithm to adjust the MKSML parameters,the algorithm could be applied to various types of rotating machinery fault diagnosis.The fault diagnosis model of rotating machinery based on MKSML was proposed,and bearing fault diagnosis experiments and gear fault diagnosis experiments were conducted.
作者 杨长远 马赛 韩勤锴 YANG Changyuan;MA Sai;HAN Qinkai(School of Mechanical Engineering,Shandong University,Jinan 250061,China;Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2024年第10期141-149,共9页 Journal of Aerospace Power
基金 国家自然科学基金(51705275,51335006,11872222) 山东大学基本科研业务费(2019GN046) 高效洁净机械制造教育部重点实验室(山东大学)基金 中央高校基本科研业务费专项资金(2020QNQT002) 山东省脑功能重构省级重点实验室开放基金(2021NGN003) 山东省重点研发计划(重大科技创新工程)项目(2021CXGC011105)。
关键词 故障诊断 信号处理 数据降维 流形学习 特征选择 fault diagnosis signal processing data dimensionality reduction manifold learning feature selection
  • 相关文献

参考文献10

二级参考文献85

共引文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部