摘要
随着全球对可再生能源的日益关注,光伏发电系统作为清洁、高效的能源转换方式,其应用日益广泛。然而,光伏发电系统的长期稳定运行面临诸多挑战,其中故障诊断和远程监控是确保系统可靠性和效率的关键。在故障诊断方面,本文分析了光伏发电系统常见故障类型,评估了现有诊断技术的优缺点,并提出了一种基于先进信号处理和机器学习算法的新型故障诊断方法。该方法通过实时监测系统运行数据,结合智能算法进行故障识别与定位,有效提高了故障诊断的准确性和效率。在远程监控方面,本文设计了一种集成数据分析、预测维护以及故障预警功能的远程监控系统。
With the increasing global attention to renewable energy,photovoltaic power generation systems,as a clean and efficient energy conversion method,are becoming more widely used.However,the long-term stable operation of photovoltaic power generation systems faces many challenges,among which fault diagnosis and remote monitoring are key to ensuring system reliability and efficiency.In terms of fault diagnosis,this article analyzes common fault types in photovoltaic power generation systems,evaluates the advantages and disadvantages of existing diagnostic technologies,and proposes a new fault diagnosis method based on advanced signal processing and machine learning algorithms.This method effectively improves the accuracy and efficiency of fault diagnosis by monitoring system operation data in real time and combining it with intelligent algorithms for fault identification and location.In terms of remote monitoring,this article designs a remote monitoring system that integrates data analysis,predictive maintenance,and fault early warning functions.
作者
张鹏
桂思睿
Peng Zhang;Sirui Gui(State Power Investment Corporation Jiangxi Electric Power Co.,Ltd.New Energy Generation Branch,Nanchang,Jiangxi 330029,China)
出处
《产业科技创新》
2024年第5期37-40,共4页
Industrial Technology Innovation
关键词
光伏发电系统
故障诊断
远程监控
技术创新
Photovoltaic power generation system
Fault diagnosis
Remote monitoring
Technological innovation