期刊文献+

AN INEXACT PROXIMAL DC ALGORITHM FOR THE LARGE-SCALE CARDINALITY CONSTRAINED MEAN-VARIANCE MODEL IN SPARSE PORTFOLIO SELECTION

原文传递
导出
摘要 Optimization problem of cardinality constrained mean-variance(CCMV)model for sparse portfolio selection is considered.To overcome the difficulties caused by cardinality constraint,an exact penalty approach is employed,then CCMV problem is transferred into a difference-of-convex-functions(DC)problem.By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton(ssN)method,an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method(siPDCA-mssN)is proposed.For solving the inner problems of siPDCA-mssN from dual,the second-order information is wisely incorporated and an efficient mssN method is employed.The global convergence of the sequence generated by siPDCA-mssN is proved.To solve large-scale CCMV problem,a decomposed siPDCA-mssN(DsiPDCA-mssN)is introduced.To demonstrate the efficiency of proposed algorithms,siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9)solver by performing numerical experiments on realword market data and large-scale simulated data.The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value.The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2024年第6期1452-1501,共50页 计算数学(英文)
基金 supported by the National Natural Science Foundation of China(Grant No.11971092) supported by the Fundamental Research Funds for the Central Universities(Grant No.DUT20RC(3)079)。

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部