期刊文献+

基于SOM-FDA利用XRF对药品铝塑包装片的分类

Study on classification of aluminum plastic packaging tablets for drugs based on SOM-FDA using XRF spectroscopy
下载PDF
导出
摘要 建立了一种对药品铝塑包装片进行快速分类的方法。利用能量色散型X射线荧光光谱(XRF)仪,对47种不同的药品铝塑包装片样品进行了检验,结合自组织映射(self organizing map,SOM)神经网络聚类,通过最大相关性最小冗余(maximum relevance minimum redundancy,MRMR)算法对元素重要性进行排序,并利用最近邻(K-nearest neighbor,KNN)分类器处理样品数据。依据样品中所含元素的种类及质量分数的不同,对药品铝塑包装片进行区分。SOM神经网络聚类的结果为9类,KNN分类器的准确率为97.87%。X射线荧光光谱法操作简便快速、无损检材、灵敏度高。建立的分类模型科学准确,可为公安机关大规模筛选、确定侦查方向、缩短侦查时间提供帮助。 This paper presents establish a method for rapid classification of pharmaceutical aluminum plastic packaging sheets.Energy dispersive X-ray fluorescence spectrometer(XRF)was used to inspect aluminum plastic packaging samples from 47 different drugs.The importance of elements were sorted by maximum relevance minimum redundancy(MRMR)algorithm combined with a self-organizing map(SOM)network clustering,and K-nearest neighbor(KNN)was used to process sample data.The aluminum-plastic packaging sheets of pharmaceutical products can be differentiated based on the types and contents of elements contained in the samples.The clustering result of SOM neural network indicated 9 categories,and the accuracy of the KNN classifier was 97.87%.It shows that X-ray fluorescence spectroscopy is a simple,fast,non-destructive,and highly sensitive method for analyzing materials.The established classification model is scientifically accurate and can provide assistance for public security organs in largescale screening,determining investigation directions,and shortening investigation time.
作者 姜红 康瑞雪 郝小辉 JIANG Hong;KANG Ruixue;HAO Xiaohui(Criminal Investigation Department,Gansu Police College,Lanzhou 730046,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第6期747-752,768,共7页 Journal of Zhejiang University(Science Edition)
基金 2024年省级人才项目(甘组通字[2024]4号) 食品药品安全防范山西省重点实验室开放课题(20220410931006).
关键词 X射线荧光光谱法 药品铝塑包装片 自组织映射神经网络 最近邻分类器 分类 X-ray fluorescence spectroscopy pharmaceutical aluminum plastic packaging sheets self organizing maps(SOM)neural network K-nearest neighbor(KNN) classification
  • 相关文献

参考文献15

二级参考文献149

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部