摘要
为了准确探究单晶冰的力学特性,制备了松花江单晶冰试样,通过三维数字图像相关法(3D-DIC)测量了在单轴压缩过程中的全场变形.在亚毫米尺度,基于基面滑移现象,探究了单晶冰的韧脆转换机理和破坏模式.松花江单晶冰的韧脆转换区间为3.0×10^(-4)~2.0×10^(-3) s^(-1),破坏模式和抗压强度体现出韧脆转换特性.在韧脆转换区间内发生劈裂破坏,抗压强度达到最大.当应变率低于3.0×10^(-4) s^(-1)时,基面滑移释放了大部分不均匀应力并发展成断裂面,发生韧性破坏.当应变率高于2.0×10^(-3) s^(-1)时,基面滑移对裂纹扩展方向的影响较小,发生碎裂破坏.等效弹性模量与应变率正相关.冰试样在达到峰值应力后出现应变软化现象,应力下降率梯度和峰值随着应变率的增加而增加.
To clearly exploring the mechanical property of single-crystal ice,single-crystal ice of Songhua River was prepared.The full-field deformation during a uniaxial compression test was measured by 3D digital image correlation(3D DIC) method.At the submillimeter scale,the ductile-brittle transition mechanism and failure mode were studied based on basal slip.The ductile-brittle transition range of Songhua River ice is determined to be 3.0×10^(-4)~2.0×10^(-3) s^(-1).The failure mode and compressive strength show the characteristics of ductile-brittle transition.Splitting failure occurs in this range,and the compressive strength reaches the maximum value.When the strain rate is lower than 3.0×10^(-4) s^(-1),the basal slip releases most stress inhomogeneity and develops into a fracture surface,resulting in ductile failure mode.when the strain rate is higher than 2.0×10^(-3) s^(-1),and the basal slip has little effect on the crack direction.The ice exhibites splitting failure.The equivalent elastic modulus is positively correlated with the strain-rate.The strain softening phenomenon occurs after the ice specimen reaches the stress peak value.The gradient and peak value of the stress reduction rate increases with the increase of the strain rate.
作者
王春阳
王庆
景重阳
韩端锋
WANG Chunyang;WANG Qing;JING Chongyang;HAN Duanfeng(College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第10期85-91,共7页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(52192690,52192695)。
关键词
冰力学
单轴压缩试验
单晶冰
破坏模式
抗压强度
数字图像相关法
ice mechanics
uniaxial compression test
single-crystal ice
failure mode
compressive strength
digital image correlation method