摘要
The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in the fusion zone after 100 h of exposure.During long-term thermal exposure,the size of the fine M_(6)C carbides increased.The eutectic M_(6)C-γcarbides in the as-welded fusion zone transformed into spherical M_(6)C carbides as the exposure time extends to 10000 h.Additionally,the spherical M_(6)C particles exhibit size coarsening with increasing exposure time.The tensile properties of the welded joints are not adversely affected by the evolution of eutectic M_(6)C-γcarbides and the coarsening of M_(6)C carbides.
基金
supported by the Technology Star of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E2551130)
the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.E2292202).