摘要
Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayed-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.
基金
supported by the National Key R&D Program of China(Nos.2022YFA1603300,2018YFA0404401,2023YFA1606701,2022YFA1602301)
National Natural Science Foundation of China(Nos.U1867211,12275026,12222514)
the CAS Light of West China Program(No.2020-82).