期刊文献+

On the origin of the low immunogenicity and biosafety of a neutralα-helical polypeptide as an alternative to polyethylene glycol

原文传递
导出
摘要 Poly(ethylene glycol)(PEG)is a prominent synthetic polymer widely used in biomedicine.Despite its notable success,recent clinical evidence highlights concerns regarding the immunogenicity and adverse effects associated with PEG in PEGylated proteins and lipid nanoparticles.Previous studies have found a neutral helical polypeptide poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethyl L-glutamate),namely L-P(EG3Glu),as a potential alternative to PEG,displaying lower immunogenicity.To comprehensively assess the immunogenicity,distribution,degradation,and biosafety of L-P(EG3Glu),herein,we employ assays including enzyme-linked immunosorbent assay,positron emission tomography-computed tomography,and fluorescent resonance energy transfer.Our investigations involve in vivo immune responses,biodistribution,and macrophage activation of interferon(IFN)conjugates tethered with helical L-P(EG3Glu)(L20k-IFN),random-coiled DL-P(EG3Glu)(DL20k-IFN),and PEG(PEG20k-IFN).Key findings encompass:minimal anti-IFN and anti-polymer antibodies elicited by L20k-IFN;length-dependent affinity of PEG to anti-PEG antibodies;accelerated clearance of DL20k-IFN and PEG20k-IFN linked to anti-IFN and anti-polymer IgG;complement activation for DL20k-IFN and PEG20k-IFN but not L20k-IFN;differential clearance with L20k-IFN kidney-based,and DL20k-IFN/PEG20k-IFN accumulation mainly in liver/spleen;enhanced macrophage activation by DL20k-IFN and PEG20k-IFN;L-P(EG3Glu)resistance to proteolysis;and safer repeated administrations of L-P(EG3Glu)in rats.Overall,this study offers comprehensive insights into the lower immunogenicity of L-P(EG3Glu)compared to DL-P(EG3Glu)and PEG,supporting its potential clinical use in protein conjugation and nanomedicines.
出处 《Bioactive Materials》 SCIE CSCD 2024年第2期333-343,共11页 生物活性材料(英文)
基金 supported by the National Key Research and Development Program of China(2019YFA0904203) Beijing Natural Science Foundation Key Project(Z220023) the National Natural Science Foundation of China(NSFC)for Distinguished Young Investigators(22125101).
  • 相关文献

参考文献4

二级参考文献59

  • 1Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21-39.
  • 2Krejsa, C.; Rogge, M.; Sadee, W. Protein therapeutics: New applications for pharmacogenetics. Nat. Rev. Drug Discov. 2006, 5, 507-521.
  • 3Christian, D. A.; Cai, S. S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Diseher, D. E. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 2009, 71,463-474.
  • 4Baker, M.; Reynolds, H. M.; Lumicisi, B.; Bryson, C. J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self/Nonself2010, 1, 314-322.
  • 5Manning, M. C.; Chou, D. K.; Murphy, B. M.; Payne, R. W.; Katayama, D. S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010, 27, 544-575.
  • 6Manning, M. C.; Patel, K.; Borchardt, R. T. Stability of protein pharmaceuticals. Pharm. Res. 1989, 6, 903-918.
  • 7Alhanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanopartiele size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16.
  • 8Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283-318.
  • 9Pisal, D. S.; Kosloski, M. P.; Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 2010, 99, 2557-2575.
  • 10Harris, J. M.; Chess, R. B. Effect ofpegylation on pharma- ceuticals. Nat. Rev. Drug Discov. 2003, 2, 214-221.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部