期刊文献+

Multi-modal imaging for dynamic visualization of osteogenesis and implant degradation in 3D bioprinted scaffolds

原文传递
导出
摘要 In situ monitoring of bone regeneration enables timely diagnosis and intervention by acquiring vital biological parameters.However,an existing gap exists in the availability of effective methodologies for continuous and dynamic monitoring of the bone tissue regeneration process,encompassing the concurrent visualization of bone formation and implant degradation.Here,we present an integrated scaffold designed to facilitate real-time monitoring of both bone formation and implant degradation during the repair of bone defects.Laponite(Lap),CyP-loaded mesoporous silica(CyP@MSNs)and ultrasmall superparamagnetic iron oxide nanoparticles(USPIO@SiO2)were incorporated into a bioink containing bone marrow mesenchymal stem cells(BMSCs)to fabricate functional scaffolds denoted as C@M/GLU using 3D bioprinting technology.In both in vivo and in vitro experiments,the composite scaffold has demonstrated a significant enhancement of bone regeneration through the controlled release of silicon(Si)and magnesium(Mg)ions.Employing near-infrared fluorescence(NIR-FL)imaging,the composite scaffold facilitates the monitoring of alkaline phosphate(ALP)expression,providing an accurate reflection of the scaffold’s initial osteogenic activity.Meanwhile,the degradation of scaffolds was monitored by tracking the changes in the magnetic resonance(MR)signals at various time points.These findings indicate that the designed scaffold holds potential as an in situ bone implant for combined visualization of osteogenesis and implant degradation throughout the bone repair process.
出处 《Bioactive Materials》 SCIE CSCD 2024年第7期119-131,共13页 生物活性材料(英文)
基金 support from various resources,including the National Natural Science Foundation of China (grant numbers 32071350,32271412,32171404) the Shanghai Rising-Star Program (grant numbers 22QA1400100) the Fundamental Research Funds for the Central Universities (grant numbers 2232019A3-06,2232021D-10) the Science and Technology Commission of Shanghai Municipality (grant numbers 21ZR1403100,19440741600,20DZ2254900).
  • 相关文献

参考文献4

二级参考文献7

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部