期刊文献+

改进头脑风暴算法在多AUV协同搜索动态目标中的应用

Application of improved brain storm optimization in multi-AUVs cooperative search moving targets
下载PDF
导出
摘要 针对搜索水中动态目标问题,提出一种基于改进头脑风暴优化(brain storm optimization,BSO)算法的多自主式水下航行器(autonomous underwater vehicle,AUV)协同搜索方法。该方法采用基于马尔可夫过程的运动预测目标存在概率,联合探测信息与预测信息更新目标存在概率。AUV间共享目标存在概率、环境不确定度、协调信息素等信息,各自利用滚动优化策略规划搜索路径。对该方法进行了有效性和鲁棒性的仿真验证。仿真结果表明,该方法能搜索到不同运动模式的水中动态目标,搜索效果优于随机算法、遍历算法等传统算法和BSO智能算法,且对AUV的不同初始出发位置不敏感,提高了战术使用的灵活性。 A cooperative search method of multiple AUV(autonomous underwater vehicle)on the basis of improved BSO(brain storm optimization)algorithm was proposed to search underwater moving targets.The target motion was predicted on the basis of Markov process,both the detection information and prediction information were used to update the target existence probability.AUVs shared the target existence probability,environmental uncertainty,and the coordination of pheromones,then planed the search path by rolling optimization strategy.The effectiveness and robustness of the proposed method were verified by simulation.The simulation results show that the method can search moving targets under different motion patterns,the search effect is better than the random algorithm,traversal algorithm and BSO algorithm,it is not sensitive to different initial departure positions of AUVs,improving the flexibility of tactical use.
作者 高永琪 王鹏 马威强 GAO Yongqi;WANG Peng;MA Weiqiang(College of Weaponry Engineering,Naval University of Engineering,Wuhan 430033,China;The PLA Unit 91959,Sanya 572000,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第6期203-209,共7页 Journal of National University of Defense Technology
基金 国家部委基金资助项目(3020605010201)。
关键词 自主式水下航行器 动态目标 改进头脑风暴算法 协同搜索 autonomous underwater vehicle moving target improved brain storm algorithm cooperative search
  • 相关文献

参考文献4

二级参考文献23

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部