期刊文献+

基于纹理特征增强的重载铁路钢轨缺陷检测算法

Defect Detection Algorithm for Heavy-haul Railway Rails Based on Texture Feature Enhancement
下载PDF
导出
摘要 为实现重载铁路轨道典型缺陷的准确、快速、智能检测,基于深度学习算法,提出一种针对重载铁路钢轨图像的特征加强卷积神经网络模型,研制一套基于机器视觉的便携式轨道图像采集系统;整理创建重载铁路钢轨表面多目标图像数据集,并基于此数据集进行训练,实现裂纹、擦伤、块状损伤、接缝4种典型缺陷目标的智能识别;针对数据集中目标尺度分布不平衡的特点,使用聚类算法重新设置锚框的尺寸和数量;对比分析重载铁路钢轨缺陷图像的纹理复杂性与固有特点,引入加权融合池化模块和纹理特征增强模块对自适应训练样本选择(ATSS)算法进行改进。应用所提算法对重载铁路轨道进行检测,4类典型缺陷目标的全类平均正确率达到85.8%。通过与其他9种检测算法的对比,充分验证了所提算法的有效性。 In order to achieve accurate,fast and intelligent detection of typical defects of heavy-haul railway rails,this study proposed a feature-enhanced convolutional neural network model for heavy-haul railway rail images based on deep learning algorithms,and developed a portable rail image acquisition system based on machine vision.A multi-target image dataset of heavy-haul railway rail surfaces was constructed and subsequently used to train a model for the intelligent recognition of four typical defect types:cracks,scrapes,spalling and joints.For the unbalanced distribution of target scales in the dataset,the size and number of anchor frames were reset using the clustering algorithm.By comparing and analyzing the texture complexity and inherent characteristics of heavy-haul railway rail defect images,a weighted fusion pooling module and a texture feature enhancement module were introduced to improve the adaptive training sample selection(ATSS)algorithm.By applying this algorithm to detect heavy-haul railway rails,the average detection accuracy of all four typical defect targets of heavy-haul railway rail reached 85.8%.Through comparative with nine other detection algorithm,the effectiveness of the algorithm model was verified.
作者 王耀东 于航 李宁 朱力强 史红梅 余祖俊 WANG Yaodong;YU Hang;LI Ning;ZHU Liqiang;SHI Hongmei;YU Zujun(Collaborative Innovation Center of Railway Traffic Safety,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Vehicle Advanced Manufacturing,Measuring and Control Technology,Ministry of Education,Beijing Jiaotong University,Beijing 100044,China;BYD Signal&Communication Company Limited,Beijing 101111,China)
出处 《铁道学报》 EI CAS CSCD 北大核心 2024年第11期93-101,共9页 Journal of the China Railway Society
基金 中央高校基本科研业务费(2022JBXT005) 国能朔黄铁路发展有限责任公司科技创新项目(GJNY-21-65)。
关键词 重载铁路 钢轨缺陷 机器视觉 深度学习 目标检测 heavy-haul railway rail defect machine vision deep learning object detection
  • 相关文献

参考文献15

二级参考文献124

  • 1祝连庆,董明利,孙军华.钢轨高速探伤检测系统中的伤损分析[J].仪器仪表学报,2003,24(z1):222-224. 被引量:5
  • 2汤友福,朱挺.线阵列CCD摄像技术在铁路检测领域的应用[J].铁路计算机应用,2004,13(5):23-25. 被引量:8
  • 3程建刚,田捷,何余良,杨鑫.基于非线性扩散滤波的指纹增强算法[J].自动化学报,2004,30(6):854-862. 被引量:17
  • 4刘蕴辉,刘铁,王权良,罗四维.基于图像处理的铁轨表面缺陷检测算法[J].计算机工程,2007,33(11):236-238. 被引量:24
  • 5Jasiūniené E, ?ukauskas E. The ultrasonic wave interaction with porosity defects in welded rail head. ULTRAGARSAS (ULTRASOUND), 2010, 65(1): 12-18.
  • 6Vidaud M, Zwanenburg W J. Current situation on rolling contact fatigue--a rail wear phenomenon. In: Proceedings of the 9th Swiss Transport Research Conference. Monte Veritá, Swiss, 2009. 1-27.
  • 7Marino F, Distante A, Mazzeo P L, Stella E. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 418-428.
  • 8Mandriota C, Stella E, Nitti M, Ancona N, Distante A. Rail corrugation detection by Gabor filtering. In: Proceedings of IEEE International Conference on Image Processing. Thessaloniki: IEEE, 2001. 626-628.
  • 9Mandriota C, Nitti M, Ancona N, Stella E, Distante A. Filter-based feature selection for rail defect detection. Machine Vision and Applications, 2004, 15(4): 179-185.
  • 10Papaelias M P, Roberts C, Davis C L. A review on non-destructive evaluation of rails: state-of-the-art and future development. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, 2008, 222(4): 367-384.

共引文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部