期刊文献+

基于差分隐私的非等距直方图发布算法

Non-isometric Histogram Publishing Algorithm Based on Differential Privacy
下载PDF
导出
摘要 针对直方图隐私泄露与分组数难以确定的问题,提出一种基于差分隐私的非等距直方图数据发布算法。首先,提出一种改进的定量化的综合评价指标,将直方图的分组评判标准定量化为特定的计算公式,以确定直方图最优分组数。然后,利用经验分布函数设计隐私预算分配方案,计算得出分组边界,从而构建非等距直方图。最后,根据非等距边界划分的分组,统计组内频数,对频数进行加噪,发布满足差分隐私的非等距直方图。实验结果表明,分组数的最优计算及非等距的实现,保证了直方图发布数据的准确性和隐私性,同时仍能保证直方图的分布特征不受影响,该文所提发布算法的均方误差与同类精确的直方图发布(accurate histogram publication, AHP)算法相比降低了99%。 To address the histogram privacy leakage and the challenge of determining the number of groups,a non-equidistant histogram data publishing algorithm based on differential privacy(DP)is proposed.Firstly,an improved quantified comprehensive evaluation index is introduced,which quantifies the criterion of histogram grouping into a specific calculation formula to determine the optimal number of histogram groups.Next,the empirical distribution function is used to design a privacy budget allocation scheme,and the grouping boundaries are calculated to construct the non-equidistant histogram. The dataset is thendivided according to the non-equidistant boundaries, and the frequencies are counted, withnoise added to satisfy the differential privacy requirements. The non-equidistant histogramis subsequently published. Experimental results show that the optimal calculation of thenumber of groups and the implementation of non-equidistance can ensure the accuracy andprivacy of the published data of the histogram, while preserving the distribution characteristicsof the histogram. The mean square error of the proposed algorithm is reduced by99% compared with similar accurate histogram publication (AHP) algorithms.
作者 单丽洋 陈学斌 郭如敏 SHAN Liyang;CHEN Xuebin;GUO Rumin(College of Science,North China University of Science and Technology,Tangshan 063210,Hebei,China;Hebei Provincial Key Laboratory of Data Science and Application,North China,University of Science and Technology,Tangshan 063210,Hebei,China;Tangshan Key Laboratory of Data Science,North China University of Science and Technology,Tangshan 063210,Hebei,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2024年第6期1052-1063,共12页 Journal of Applied Sciences
基金 国家自然科学基金(No.U20A20179)资助。
关键词 非等距 直方图分组 差分隐私 隐私预算 non-isometric histogram grouping differential privacy(DP) privacy budget
  • 相关文献

参考文献12

二级参考文献76

  • 1刘甸瑞.作直方图中的最优分组问题[J].物探化探计算技术,1995,17(1):64-67. 被引量:17
  • 2杨颖,韩忠明,杨磊.数据流的核心技术与应用发展研究综述[J].计算机应用研究,2005,22(11):4-7. 被引量:13
  • 3Atilgan, T., On derivation and application of AIC as a data-based criterion for histogram, Commun. Statist. Theory Meth., 19(1990), 885-903.
  • 4Beer, C.F. and Swanepoel, J.W.H., Simple and effective number-of-bins circumference selectors for a histogram, Statistics and Computing, 9(1999), 27-35.
  • 5Birge, L. and Rozenholc, Y., How Many Bins Should Be Put in a Regular Histogram, Prepublication 721, Laboratoire de Probabilites et ModUles Al~atoires, Universite Paris VI et VII, France, 2002.
  • 6Barron, A., Birge, L. and Massart, P., Risk bounds for model selection via penalization, Probability Theory and Related Fields, 113(1999), 301 -415.
  • 7Castellan, G., Selection d'histogrammes ou de ModUles exponentiels de polynomes par morceaux a l'aide d'un critere de type Akaike, ThEse, Mathematiques, Universite de Paris-Sud, 2000.
  • 8Chen, X.R. and Zhao, L.C., Almost sure L[1]-norm convergence for data-based histogram density estimates, Journal of multivariate analysis, 21(1987), 179 -188.
  • 9Daly, J.E., The construction of optimal histograms, Commun. Statist.- Theory Meth., 17(1988), 2921- 2931.
  • 10Devroye, L. and GySrfi, L., Nonparametric Density Estimation: The L[I] View, Wiley, New York, 1985.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部