摘要
提出一种精英学习改进TSO优化Tsallis熵的遥感图像多阈值分割方法。在传统TSO算法中引入精英对立学习实现种群初始化,利用权重系数非线性更新均衡算法全局搜索与局部开发,引入精英池策略提高收敛精度。以Tsallis熵作为适应度评估个体优劣,利用改进算法搜索阈值最优解。利用4幅遥感图像验证算法有效性,改进算法在峰值信噪比、结构相似度、特征相似度和计算效率上表现更好,能有效提升图像识别精度和分割效率。
A multi threshold segmentation method for remote sensing images using elite-learning improved tuna algorithm optimizing Tsallis entropy was proposed.The elite opposite-learning was introduced to achieve population initialization in traditional tuna algorithms,a nonlinear update of weight coefficients was used to balance the global search and local development of the algorithm and an elite pool strategy was used to improve the convergence accuracy.Tsallis entropy was used as the fitness function to evaluate the quality of individuals,and the improved algorithm was used to iteratively search for optimal solutions of image segmentation threshold.The effectiveness of the algorithm was verified using four remote sensing images.It is confirmed that the improved algorithm performs better in peak signal-to-noise ratio,structural similarity,feature similarity and computational efficiency,and can effectively improve the recognition accuracy and segmentation efficiency of remote sensing images.
作者
廖晓芳
胡新乾
LIAO Xiao-fang;HU Xin-qian(Intelligent Information Research Institute,South China Business College,Guangdong University of Foreign Studies,Guangzhou 510545,China;School of Computers,Hunan University of Technology,Zhuzhou 412000,China)
出处
《计算机工程与设计》
北大核心
2024年第11期3471-3478,共8页
Computer Engineering and Design
基金
广东省普通高校特色创新基金项目(2020KTSCX205)
广东外语外贸大学南国商学院校级科研基金项目(19-005A)。
关键词
金枪鱼算法
遥感图像
图像识别
精英学习
图像熵
精英池
权重系数
tuna algorithm
remote sensing images
image recognition
elite learning
image entropy
elite pool
weight coe-fficients