期刊文献+

改进YOLOv3的红外弱小目标检测

Improved YOLOv3 in infrared dim small target detection
下载PDF
导出
摘要 为解决在红外场景下小目标携带的特征信息较少,导致检测结果精度较低且容易出现漏检等问题,建立一种红外弱小目标检测模型。使用改进的K-means聚类算法对YOLOv3的anchor进行重新聚类,聚类中心点的迭代以交并比代替原来的欧氏距离。通过改进的空间金字塔池化模块将浅层空间特征与深层语义特征相融合,丰富红外弱小目标的特征信息。将EIoU引入到YOLOv3中,使目标框和锚框的宽度和高度的差异最小化。实验结果表明,该模型在SAITD数据集上的查准率达到了94.83%,平均查准率达到了89.26%,检测精度优于传统红外目标检测网络及部分深度目标检测网络。 To solve the problem that small targets carry less characteristic information in infrared scene,which leads to low accuracy of detection results and is easy to miss alarms,an infrared dim small target detection model was established.The improved K-means clustering algorithm was used to recluster the anchor of YOLOv3,and for the iteration of the cluster center points,the original Euclidean distance was replaced by the intersection ratio.Through the improved space pyramid pool module,the shallow spatial features and deep semantic features were integrated to enrich the feature information of infrared dim target.EIoU was introduced into YOLOv3 to minimize the difference in width and height between the target frame and the anchor frame.Experimental results show that the accuracy of the model on the SAITD dataset reaches 94.83%,and the average accuracy reaches 89.26%,which is better than that of the traditional infrared target detection network and some deep target detection networks.
作者 臧涛 傅志凌 王喆 钮赛赛 王梦如 杨海 ZANG Tao;FU Zhi-ling;WANG Zhe;NIU Sai-sai;WANG Meng-ru;YANG Hai(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China;803 Institute of Aerospace Control Technology,Shanghai Aerospace Control Technology Institute,Shanghai 201109,China)
出处 《计算机工程与设计》 北大核心 2024年第11期3479-3485,共7页 Computer Engineering and Design
基金 增量上海市科技计划基金项目(21511100800) 中国航天科技集团公司第八研究院产学研合作基金项目(SAST2021-007) 中国科技国防计划基金项目(2021-JCJQ-JJ-0041)。
关键词 红外弱小目标检测 K-MEANS 空间金字塔池化 特征融合 EIoU YOLOv3 损失函数 infrared dim small target detection K-means space pyramid pool feature fusion EIoU YOLOv3 loss function
  • 相关文献

参考文献4

二级参考文献20

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部