摘要
为了探究磷矿粒径、液固比等因素对湿法磷酸反应槽中磷矿溶解反应的影响,提出了一种机器学习数据融合的建模方法。首先采用集总参数法建立能够表征磷酸生产特性的机理模型,其次利用工业运行数据和深度置信网络,获得不同工况下模型中未知的状态参数。并利用Python平台进行建模仿真,分析不同液固比以及对磷矿浆溶液转换率的影响。仿真表明,在反应槽液固比为10:1以及磷矿粒径为100μm时,磷矿的转化率最高,该模型对湿法磷酸生产和磷收率的优化调控能起到支撑作用。
In order to investigate the influence of factors such as phosphorus ore particle size and liquid-solid ratio on the dissolution reaction of phosphorus ore in wet process phosphoric acid reaction tanks,this paper proposes a modeling method based on machine learning data fusion.Firstly,a mechanism model that can characterize the production characteristics of phosphoric acid is established using the lumped parameter method.Secondly,industrial operation data and deep confidence networks are used to obtain unknown state parameters in the model under different operating conditions.And use the Python platform for modeling and simulation,analyze the impact of different liquid solid ratios on the conversion rate of phosphate slurry solution.Simulation shows that the conversion rate of phosphate ore is highest when the liquid-solid ratio in the reaction tank is 10:1 and the particle size of phosphate ore is 100.This model can provide support for the optimization and control of wet process phosphoric acid production and phosphorus yield.
作者
李显军
赵小平
余德靖
赵亮
LI Xianjun;ZHAO Xiaoping;YU Dejing;ZHAO Liang
出处
《化工设计通讯》
CAS
2024年第11期1-4,17,共5页
Chemical Engineering Design Communications
基金
2024年国家自然科学基金面上项目“面向化工过程低碳运行的多尺度不确定性决策方法及其应用”(62373154)。
关键词
湿法磷酸
反应槽
机理模型
机器学习
数据融合
wet process phosphoric acid
reaction tank
mechanism model
machine learning
data fusion