摘要
We propose an approach to learning sample embedding for analyzing multi-dimensional datasets.The basic idea is to extract rules from the given dataset and learn the embedding for each sample based on the rules it satisfies.The approach can filter out pattern-irrelevant attributes,leading to significant visual structures of samples satisfying the same rules in the projection.In addition,analysts can understand a visual structure based on the rules that the involved samples satisfy,which improves the projection’s pattern interpretability.Our research involves two methods for achieving and applying the approach.First,we give a method to learn rule-based embedding for each sample.Second,we integrate the method into a system to achieve an analytical workflow.Cases on real-world dataset and quantitative experiment results show the usability and effectiveness of our approach.
基金
supported by NSFC project(62372321).