期刊文献+

Wave runup prediction for a semi-submersible based on temporal convolutional neural network

原文传递
导出
摘要 Nonlinear wave runup could result in serious wave impact on the local structures of offshore platforms in rough seas.The reliable and efficient wave runup prediction is beneficial to provide essential information for the design and operation of offshore platforms.This work aims to develop a novel data-driven method to achieve the nonlinear mapping underlying the wave-structure interactions.The Temporal Convolution Network(TCN)model was employed to predict the wave runup along the column of a semi-submersible in head seas.The incident wave and vertical motions including heave,roll,and pitch were fed into the TCN model to predict the wave runup.Experimental datasets were provided for training and test.Tak-ing both temporal and spatial dependency into consideration,the input tensor space was optimized from the perspective of physical meaning and practicality.Sensitivity analyses were conducted to obtain the optimum length of time window and evaluate the relative importance of input variables to wave runup prediction.Moreover,the effects of characteristics and size of the training dataset on the model perfor-mance were investigated to provide guidelines for training dataset construction.Finally,upon validation,the generated TCN model showed a strong ability to provide stable and accurate wave runup results un-der various wave conditions,and it is a potential alternative tool to achieve efficient but low-cost wave runup prediction.
出处 《Journal of Ocean Engineering and Science》 SCIE 2024年第6期528-540,共13页 海洋工程与科学(英文)
基金 support of the National Natural Science Foundation of China(Grant Nos.52031006,51879158) Shanghai Sailing Program,China(Grant No.20YF1419800).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部