摘要
Mesenchymal stem cells(MSCs)have demonstrated significant therapeutic potential in heart failure(HF)treatment.However,their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species(ROS)microenvironment.In this study,monascus pigment(MP)nanoparticle(PPM)was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs(BMSCs).Meanwhile,in order to load PPM and reduce the mechanical damage of BMSCs,injectable hydrogels based on Schiff base cross-linking were prepared.The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities,significantly enhancing BMSCs survival and activity in HF microenvironment.This hydrogel demonstrates superior biocompatibility,injectability,and tissue adhesion.With the synergistic effects of injectable,adhesive hydrogel and the microenvironment-modulating properties of MP,cardiac function was effectively improved in the pericardial sac of rats.Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.
基金
supported by the National Natural Science Foundation of China(81900339,82072072,32261160372)
The Third People’s Hospital of Chengdu First-Class Incubation Project(CSY-YN-01-2023-003)
Special Funding for Postdoctoral Research in Sichuan Province(2023TB095)
The Fundamental Research Funds for the Central Universities(2682022TPY052)
Chengdu Medical Research Project(2022138)
the Natural Science Foundation of Tibet Autonomous Region Grant number(XZ202201ZR0036G).