期刊文献+

Fc-empowered exosomes with superior epithelial layer transmission and lung distribution ability for pulmonary vaccination

原文传递
导出
摘要 Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection.However,the defense function of mucosal barrier remains a challenge for vaccines to overcome.Here,we show that surface modification of exosomes with the fragment crystallizable(Fc)part from IgG can deliver the receptor-binding domain(RBD)of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor(FcRn)mediated transcytosis.The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells,in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane.After intratracheally administration,F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals’lungs.Furthermore,potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses.F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge.These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.
出处 《Bioactive Materials》 SCIE CSCD 2024年第12期573-586,共14页 生物活性材料(英文)
基金 supported by the National Key R&D Program of China(2023YFC2605000) National Natural Science Foundation of China(32371440,32101157,82104105,81573357) China Postdoctoral Science Foundation(2021M693966).
  • 相关文献

参考文献2

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部