摘要
Rapid development of checkpoint inhibitors has provided significant breakthroughs for cancer stem cell(CSC)therapy,while the therapeutic efficacy is restricted by hypoxia-mediated tumor immune evasion,especially hypoxia-induced CD47 overexpression in CSCs.Herein,we developed a genetically engineered CSC membrane-coated hollow manganese dioxide(hMnO_(2)@gCMs)to elicit robust antitumor immunity by blocking CD47 and alleviating hypoxia to ultimately achieve the eradication of CSCs.The hMnO_(2)core effectively alleviated tumor hypoxia by inducing decomposition of tumor endogenous H_(2)O_(2),thus suppressing the CSCs and reducing the expression of CD47.Cooperating with hypoxia relief-induced downregulation of CD47,the overexpressed SIRPαon gCM shell efficiently blocked the CD47-SIRPα“don’t eat me”pathway,synergistically eliciting robust antitumor-mediated immune responses.In a B16F10-CSC bearing melanoma mouse model,the hMnO_(2)@gCMs showed an enhanced therapeutic effect in eradicating CSCs and inhibiting tumor growth.Our work presents a simple,safe,and robust platform for CSC eradication and cancer immunotherapy.
基金
supported by the National Natural Science Foundation of China(Nos.82222035 and 82372106)
the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110633)
the Shenzhen Medical Research Found(No.B2302041)
the Shenzhen Science and Technology Program(No.RCBS20221008093123060)
the Shenzhen Bay Laboratory Proof-of-Concept Fund(No.S231801005).