摘要
纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建,使用合成波场快照进行训练,训练完成的网络类似空间滤波器,可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法,该方法可以在波场任意空间位置处开展P-S波波场分解,因此适用于面向目标的地震成像。合成数据的计算示例表明,基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场,且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明,使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果,可有效减少速度界面处的成像假象,提高复杂地质条件下的多波成像精度。
P-and S-wave decomposition is essential for imaging multi-component seismic data in elastic media,but conventional decomposition methods suffer from low accuracy and imaging artifacts.A data-driven workflow is proposed to obtain a set of neural networks that are highly accurate and artifact-free for decomposing the P-and S-waves in two-dimensional(2D)isotropic elastic media.The neural networks are fully-convolutional neural networks(FCN)working as a spatial filter to decompose P-and S-waves with a high accuracy.Different from the P-S decomposition algorithms using the Fourier transform,the spatial filters are more flexible in decomposing P-and S-waves at any time step and at any spatial position,which makes this method suitable for target-oriented imaging.Snapshots of synthetic data show that the network-tuned spatial filters can decompose P-and S-waves with improved accuracy compared with other space-domain P-S decomposition methods.Elastic-wave reverse-time migration using P-and S-waves decomposed by the proposed algorithm shows reduced artifacts where there is a high velocity contrast.
作者
许凯
陈祖庆
孙振涛
张广智
康家光
王静波
XU Kai;CHEN Zuqing;SUN Zhentao;ZHANG Guangzhi;KANG Jiaguang;WANG Jingbo(School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China;SINOPEC Geophysical Research Institute Co.,Ltd.,Nanjing 211103,China;SINOPEC Exploration Company,Chengdu 610041,China)
出处
《石油物探》
CSCD
北大核心
2024年第6期1126-1137,共12页
Geophysical Prospecting For Petroleum
基金
国家自然科学基金企业创新发展联合基金项目(U19B6003)、中国石化十条龙课题(P21078-4)和中国石化科技攻关项目(P22081,P22386)共同资助。