摘要
针对超声心动图因噪声大、左心室边缘模糊造成分割困难和分割结果不准确的问题,提出一种结合Transformer和CNN的左心室分割算法.首先利用2种网络构架高效地捕捉全局特征和局部细节;其次使用卷积注意力设计特征融合模块,自适应地融合来自Transformer和CNN分支的特征;最后引入桥注意力模块并根据3层融合特征计算注意力特征图,得到更精确的分割结果.在大型心脏图像数据集EchoNet-Dynamic上进行训练、验证和测试的结果表明,所提算法的Dice系数达到92.41%,分割性能优于6种对比算法;在临床患者的超声图像上,可视化和临床医生的盲审结果证明了该算法的有效性.所提算法可以精确地分割左心室,为心脏疾病诊断提供可靠的计算机辅助.
To address the problem of difficult and inaccurate segmentation of left ventricle due to high noise and fuzzy edge in echocardiography,we propose a left ventricle segmentation algorithm that combines Transformer and CNN.First,we use two network architectures to efficiently capture global features and lo-cal details.Second,we design a feature fusion module using convolutional attention to adaptively fuse fea-tures from Transformer and CNN branches.Finally,we introduce a bridge attention module and calculate attention feature maps based on three-layer fusion features to obtain more accurate segmentation results.To validate the performance of HeartNet,we train,validate and test it on a large-scale cardiac image dataset EchoNet-Dynamic,achieving a Dice Coefficient of 92.41%,which outperforms six other algorithms in-volved in comparison.We test it on clinical patients’ultrasound images,and the visualization and blind re-view results by clinical doctors demonstrate the effectiveness of this algorithm.The experimental results show that HeartNet can accurately segment left ventricle,providing reliable computer assistance for cardiac disease diagnosis.
作者
史松林
帕孜来·马合木提
Shi Songlin;Pazilai Mahemuti(College of Electrical Engineering,Xinjiang University,Urumqi 830017)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第9期1418-1426,共9页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61963034)。
关键词
超声心动图
左心室分割
TRANSFORMER
卷积神经网络
ultrasound echocardiography
left ventricular segmentation
Transformer
convolutional neural net-works