期刊文献+

基于机器视觉的自动分选技术探究

Research on Automatic Sorting Technology Based on Machine Vision
下载PDF
导出
摘要 分选是自动化生产线的重要环节,集成了视觉功能的自动分选技术,在提升分选效率的同时,也极大地拓宽了分选的精准性与普适性,广泛应用于生产制造的各个行业。从国内发展概况、分选系统软硬件构成、分选基本流程以及关键技术四个方面,探究了基于机器视觉自动分选技术的常用理论与方法。 Sorting is an important link of an automated production line,and automatic sorting technology integrating visual functions that can not only improve sorting efficiency but also greatly expand the accuracy and universality of sorting is widely used in various production and manufacturing industries.This paper explores commonly used theories and methods for machine vision based automatic sorting technology in terms of domestic development overview,hardware and software composition of the sorting system,basic sorting process,and key technologies.
作者 张卫国 李时舫 羿宏雷 马玲 孟凡烨 ZHANG Wei-guo;LI Shi-fang;YI Hong-lei;MA Ling;MENG Fan-ye(Harbin Institute of Forestry Machinery,National Forestry and Grassland Administration,Harbin Heilongjiang 150086,China;Key Laboratory of Forestry Mechanical and Electrical Engineering,National Forestry and Grassland Administration,Harbin Heilongjiang 150086,China;Forestry Equipment Engineering Technology Research Center,National Forestry and Grassland Administration,Harbin Heilongjiang 150086,China)
出处 《林业机械与木工设备》 2024年第10期15-19,24,共6页 Forestry Machinery & Woodworking Equipment
基金 中国林业科学研究院林业新技术研究所面上项目(CAFYBB2020SY044)。
关键词 机器视觉 自动分选技术 machine vision automatic sorting technology
  • 引文网络
  • 相关文献

参考文献6

二级参考文献33

  • 1赵真明,孟正大.基于加权A~*算法的服务型机器人路径规划[J].华中科技大学学报(自然科学版),2008,36(S1):196-198. 被引量:33
  • 2李擎,谢四江,童新海,王志良.一种用于车辆最短路径规划的自适应遗传算法及其与Dijkstra和A^*算法的比较[J].北京科技大学学报,2006,28(11):1082-1086. 被引量:20
  • 3Bohm J, Haala N, Kapusy P. Automated appearance-based building detection in terrestrial images [J]. International Archives on Photogrammetry and Remote Sensing, 2002, 34(5): 491-495.
  • 4Felzenszwalb P, Huttenlocher D. Efficient graphbased image segmentation[J]. International Journal of Computer Vision, 2004, 59(2) : 167-181.
  • 5Ma J W,Wang T J. A cost-function approach to rival penalized competitive learning [J]. IEEE Transactions on Systems Man and Cybernetics, 2006, 36(4) : 722-737.
  • 6Greene M R, Oliva A. Recognition of natural scenes from global properties: seeing-the-forst without representing the trees [ J ]. Cognitive Psyshology, 2009, 58(2): 137-179.
  • 7叶聪颖.建筑目标识别中检测与分割技术的研究[D].厦门大学图书馆,2005.
  • 8Computational Vision Group at Caltech. Pasadena Houses 2000 [EB/OL]. [2009-05-10]. http: // www. vision, ealteeh, edu/html-files/arehive, html.
  • 9Lepetit V, Fua P. Keypoint recognition using randomized trees [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (9) :1 465-1 479.
  • 10Zhang W, KSseckta J. Localization based on building recognition[C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [s. n. ], 2005: 21-28.

共引文献49

;
使用帮助 返回顶部