摘要
研究铁路计算机视觉大模型关键技术及其应用,对统筹和促进铁路人工智能发展具有深远意义。文章依托铁路人工智能平台的算力与大模型支撑组件,提出从基础大模型到铁路计算机视觉大模型,再到铁路计算机视觉场景大模型的架构设计思路。基于基础大模型,设计模型训练框架,运用模型剪枝和多尺度推理技术保障推理速度与精度,完成铁路计算机视觉大模型的构建;提出铁路计算机视觉大模型的应用场景,并选取线路环境安全管控智能识别场景对该大模型能力进行验证。实验结果表明,铁路计算机视觉大模型在复杂背景下的微小目标检测方面表现卓越,具有较好的应用前景,将在铁路运输安全、移动装备检测、铁路客货运服务等业务领域发挥更加重要的作用。
Studying the key technologies and applications of railway large vision model has profound significance for coordinating and promoting the development of railway artificial intelligence.This paper relied on the computing power and large model support components of the railway artificial intelligence platform to propose an architecture design concept from the basic large model to the railway large vision model and then to the railway scenario large vision model.Based on a basic large model,the paper designed a model training framework,and used model pruning and multi-scale reasoning techniques to ensure inference speed and accuracy,implemented the construction of a railway large vision model.The paper also proposed the application scenarios of railway large vision model,and selected the intelligent recognition scenario of line environment safety management and control to verify the capabilities of this large vision model.The experimental results show that the railway large vision model performs excellently in detecting small targets in complex backgrounds and has good application prospects.It will play a more important role in railway transportation safety,mobile equipment detection,railway passenger and freight transport services,and other business domain.
作者
史天运
李国华
代明睿
李文浩
杨涛存
SHI Tianyun;LI Guohua;DAI Mingrui;LI Wenhao;YANG Taocun(China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;Institute of Computing Technologies,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)
出处
《铁路计算机应用》
2024年第11期8-16,共9页
Railway Computer Application
基金
中国国家铁路集团有限公司科技研究开发计划重大课题(P2023S001)。
关键词
视觉大模型
铁路场景
目标检测
模型剪枝
多尺度推理
铁路人工智能平台
large vision model
railway scenario
object detection
model pruning
multi-scale reasoning
railway artificial intelligence platform