摘要
针对列车火灾发生环境复杂且火灾识别的有效性无法保障等问题,设计并实现了列车火灾智能监测预警系统。介绍系统架构和火灾实时监测预警、三维可视化展示、车载终端及调度中心可靠连接、多用户接入及权限管理等功能。该系统基于边缘计算节点部署方案,通过采集图像、温度、风速、烟气浓度等4类数据,运用基于多层感知器(MLP,Multilayer Perceptron)的多模态融合网络模型,实现了多源异构数据的融合。仿真实验结果表明,该系统能够有效实现列车火灾实时监测预警功能。
In response to the complex environment in which train fires occur and the inability to ensure the effectiveness of fire recognition,this paper designed and implemented an intelligent monitoring and early warning system for train fires.The paper introduced the system architecture and functions such as real-time fire monitoring and warning,3D visualization display,reliable connection between vehicle terminals and dispatch centers,multi-user access,and permission management.Based on the edge computing node deployment scheme,by collecting four types of data,such as image,temperature,wind speed,and smoke concentration,and using the multi-mode fusion network model based on MLP(Multilayer Perceptron),this system implemented the fusion of multi-source heterogeneous data.The simulation experiment results show that the system can effectively achieve real-time monitoring and early warning of train fires.
作者
李珉璇
LI Minxuan(Electrification and Telecommunications Institute,China Railway Design Corporation,Tianjin 300308,China)
出处
《铁路计算机应用》
2024年第11期70-74,共5页
Railway Computer Application
基金
国家重点研发计划(2022YFC3005205)
中国铁路设计集团有限公司科技开发课题(2024A0251202)。
关键词
列车火灾
多源异构数据
边缘计算
智能监测
可视化
train fire
multi-source heterogeneous data
edge computing
intelligent monitoring
visualization