摘要
针对智能机器人接收的多样模态访问信息,文章提出了基于卷积神经网络的访问控制方法。通过量化处理图像、文本、语音数据,引入卷积神经网络分析“超平面”中的映射分布,确定访问控制函数输出。测试显示,该方法下异常访问对系统安全态势影响小,参数稳定在90.0以上,显著优于对照组,展现了可靠性方面的优势。
This article proposes an access control method based on convolutional neural networks for the diverse modal access information received by intelligent robots.By quantifying image,text,and speech data,a convolutional neural network is introduced to analyze the mapping distribution in the hyperplane and determine the output of the access control function.Tests have shown that abnormal access under this method has little impact on the system security situation,with parameters stable above 90.0,significantly better than the control group,demonstrating advantages in reliability.
作者
王志
WANG Zhi(School of Information Engineering,Zhengzhou University of Industrial Technology,Xinzheng 451100,China)
出处
《无线互联科技》
2024年第21期52-54,共3页
Wireless Internet Science and Technology
基金
教育部产学合作协同育人项目,项目编号:230807178304320。
关键词
卷积神经网络
信息安全访问控制
点数据量化模态
“超平面”
数据特征
映射分布
判断函数
convolutional neural network
information security access control
point data quantification mode
“hyperplane”
data characteristics
mapping distribution
judgment function