期刊文献+

含几何缺陷旋转FG-CNTRC梁非线性自由振动分析

Nonlinear Free Vibration of Rotating FG-CNTRC Beams with Geometric Imperfections
下载PDF
导出
摘要 以含有初始几何缺陷的功能梯度碳纳米管增强旋转梁的非线性自由振动行为为对象开展研究。根据Euler–Bernoulli梁理论,引入von Kármán几何非线性假设,利用Hamilton原理,推导出系统的非线性偏微分控制方程。随后,采用Galerkin法,将控制方程转化为常微分方程,并利用变分迭代法,求得系统非线性频率的解析解。最后,通过数值结果,讨论材料属性、转速、轮毂半径和几何缺陷等因素对结构非线性频率的影响。 The nonlinear free vibration behaviors of rotating functionally graded carbon nanotube-reinforced composite(FG-CNRC)beams with geometric imperfections was investigated.Firstly,according to Euler-Bernoulli beam theory along with von-Kármán geometric nonlinearity assumption,the nonlinear partial differential governing equation was derived by means of Hamilton′s principle.Then,the Galerkin method was applied to get the discrete ordinary equation.Next,the variational iteration method was employed to get the analytical solution of the system nonlinear frequency.Finally,influence of FG-CNRC property,rotating speed,hub radius and geometric imperfection on the nonlinear frequency was discussed.
作者 林百川 覃健桂 莫新娣 LIN Baichuan;QIN Jiangui;MO Xindi(College of Civil Engineering and Architecture,Guilin university of technology,Guilin 541004,Guangxi,China;College of Science,Guilin University of Technology,Guilin 541004,Guangxi,China)
出处 《噪声与振动控制》 CSCD 北大核心 2024年第6期91-96,共6页 Noise and Vibration Control
基金 广西高校中青年教师科研基础能力提升资助项目(2023KY0261,2023KY0271) 四川省自然科学基金资助项目(22NSFSC0275)。
关键词 振动与波 旋转梁 功能梯度碳纳米管增强复合材料 几何缺陷 变分迭代法 非线性频率 vibration and wave rotating beam FG-CNRC geometric imperfection variational iteration method nonlinear frequency
  • 相关文献

参考文献9

二级参考文献51

  • 1张田忠,郭兴明.径向压缩单壁碳纳米管的力学行为[J].力学学报,2005,37(4):408-412. 被引量:3
  • 2李海军,郭万林.单壁碳纳米管的等效梁单元有限元模型[J].力学学报,2006,38(4):488-495. 被引量:8
  • 3Chung J, Yoo H H. Dynamic analysis of rotating cantilever beam by using the finite element method[J]. J. Sound Vib., 2002, 249: 147-164.
  • 4Bazoune A. Effect of tapering on natural frequencies of rotating beams[J]. Shoe, k Vib., 2007, 14: 169-179.
  • 5Fox C H J, Burdess J S. The natural frequencies of a thin rotating cantilever with offset root[J]. J. Sound Vib., 1979, 65: 151-158.
  • 6Yigit A, Scott R A, Ulsoy A G. Flexural motion of a rotating beam attached to a rigid body[J]. J. Smmd Vlb., 1988, 121: 201-210.
  • 7Banerjee J R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method[J]. I. Sound Vib., 2000, 233: 857-875.
  • 8Banerjee J R, Su H, Jackson D R. Free vibration of rotating tapered beams using the dynamic stiffness method [J]. J. Sotmd Vib., 2006, 298: 1034-1054.
  • 9Banerjee J R. Free vibration of sandwich beams usingthe dynamic stiffness method[J]. Comput Straet, 2003, 81: 1915-22.
  • 10Chert M L, Liao Y S. Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints[J]. J. Sotmd Vib., 1991, 147: 497-513.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部