摘要
该文首次提出电力系统定碳排运行域(committed carbon emissions operation regions,CCEOR)的概念,刻画电力系统低碳安全运行空间(low-carbon operation space,LCOS),为新型电力系统低碳、安全运行提供科学、全面的决策依据,进一步丰富现有的低碳分析理论。针对高维非线性时空耦合变量下,定碳排运行域边界求解的关键技术瓶颈,基于数据与模型混合驱动思想建立域边界的高效求解方法。该方法结合特征工程,基于注意力机制与深度卷积的神经网络架构,以及数据与模型混合驱动的训练机制,有效保障CCEOR边界求解的高效性和准确性。最后,通过IEEE-118测试系统进行仿真分析,验证CCEOR能够有效评估系统的低碳运行态势,并确定低碳安全的调控方向。同时,验证所提域边界求解方法的高效性和高维适用性。通过可视化分析CCEOR随关键约束的变化特性,剖析LCOS的边界特征并发现其存在的空间饱和现象,进一步揭示电力系统运行的电碳耦合机理。
This paper first proposes the concept of committed carbon emission operation regions(CCEOR)to depict the low-carbon operation space(LCOS)of power system,which provides more comprehensive information for low-carbon operation analysis.Then,aiming at the construction of the CCEOR boundary(CCEORB)under the high-dimensional nonlinear spatio-temporal coupling variables of power system,this paper develops a CCEORB construction method based on data and model hybrid driven mechanism.With the feature engineering,neural network architecture based on attention mechanism and deep convolution,and data and model hybrid driven training mechanism,the presented method guarantees the efficiency accuracy of CCEORB.The study with the IEEE-118 test system verifies that the proposed CCEOR can be used as a basic tool for low-carbon operation analysis to achieve low-carbon feasibility assessment and regulation of operating states.Meanwhile,the efficiency and high-dimensional applicability of the proposed method are confirmed.In addition,the variation characteristics of CCEOR with key constraints are visually analyzed,including the boundary characteristics of LCOS and its saturation phenomenon,which further reveal the electric-carbon coupling mechanism of power system operation.
作者
冯健冰
任洲洋
姜云鹏
李文沅
FENG Janbing;REN Zhouyang;JIANG Yunpeng;LI Wenyuan(State Key Laboratory of Power Transmission Equipment Technology(School of Electrical Engineering,Chongqing University),Shapingba District,Chongqing 400044,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2024年第22期8846-8859,I0013,共15页
PROCEEDINGS OF THE CHINESE SOCIETY FOR ELECTRICAL ENGINEERING
基金
国家自然科学基金(面上项目)(52277080)。
关键词
低碳运行
域理论
深度学习
特征工程
数据与模型混合驱动
low-carbon operation
region theory
deep learning
feature engineering
data and model hybrid driven