摘要
利用现地调查数据,构建油松人工混交林单木地上生物量估算模型。通过野外调查,共获取了1313株油松人工混交林单木生物量实测数据,基于最小二乘法、线性混合效应模型和随机森林混合效应模型,分别构建油松人工混交林单木地上生物量模型。结果表明:1)线性混合效应模型(LME)和随机森林混合效应模型(MXRF)结果与普通最小二乘模型(OLS)相比,立地因子作为随机效应能够提升模型的解释能力;2)随机森林混合效应模型(MXRF)的决定系数(0.9907)大于线性混合效应模型(0.9347)和普通最小二乘模型(0.9332),且随机森林混合效应模型的均方根误差(RMSE)和平均绝对误差绝对值(MAE)均小于线性混合效应模型和普通最小二乘模型,说明MXRF模型拟合效果优于OLS模型;3)MXRF模型拟合克服了2种线性模型拟合中存在的异方差问题。本研究构建的模型较好地反映了油松人工混交林地上生物量与生长指标间的关系,形式简单、使用方便,可以为林分生长预测和可持续经营提供依据。
The objective of this study was to establish model to estimate the individual aboveground biomass of mixed Pinus tabuliformis plantation by using the data of site investigation.Through field surveys,the measured data of the individual biomass of 1313 P.tabuliformis plants were obtained in mixed plantations.Based on the ordinary least square model(OLS),linear mixed effect model(LME),and mixed effect random forest model(MXRF),the biomass estimation models were constructed and compared.The results showed that 1)compared to the results of LME,MXRF and OLS,the application of site factors as random effects enhanced the explanation capability of the models.2)The coefficient of determination of MXRF(0.9907)was larger than those of LME(0.9347)and OLS(0.9332).The root mean square error(RMSE)and mean absolute error(MAE)of MXRF were less than those of LME and OLS,indicating that the fitting effect of MXRF is better than the OLS model.3)MXRF model solved the problem of heteroscedasticity other than LME and OLS models.It is concluded that MXRF well reflects in the relationship between the biomass and growth indicators of P.tabuliformis plantations.The form of MXRF model is simple and convenient to use,which can provide a basis for the growth forecast and sustainable management of the plantations.
作者
王永平
刘利萍
吴子昂
WANG Yongping;LIU Liping;WU Ziang(Shaanxi Academy of Forestry Sciences,Xi'an 710082,Shaanxi,China;Yangling Vocational&Technical College,Yangling 712100,Shaanxi,China;College of Software,Northwestern Polytechnical University,Xi'an 710129,Shaanxi,China)
出处
《西北林学院学报》
CSCD
北大核心
2024年第6期27-33,共7页
Journal of Northwest Forestry University
基金
国家自然科学基金项目(31270690)。
关键词
油松人工混交林
地上生物量
混合效应模型
随机森林
Pinus tabuliformis mixed plantation
aboveground biomass
mixed effect model
random forest model