摘要
针对无线超宽带(Ultra-Wide Band,UWB)室内定位技术在非视距(Non-Line-Of-Sight,NLOS)环境下定位精度差以及定位稳定性低等问题,将UWB定位技术和惯性导航系统(Inertial Navigation System,INS)相融合,提出了一种改进的信息鲁棒卡尔曼滤波器,以增强UWB在室内场景中的可靠性。通过使用UWB/INS紧耦合模型和引入信息损失系数,实现了对每个量测权重的动态调整,在抗NLOS遮挡误差的同时,最大化了UWB信息的利用率。在导航实验室内的实验结果表明,相较于一般方法,所提方法将随机遮挡造成的定位误差降低到原来的17.21%。
Regarding the issues of poor positioning accuracy and low stability of indoor Ultra-Wide Band(UWB)positioning technology in non-line-of-sight(NLOS)environments,this work incorporates UWB positioning technology with Inertial navigation system(INS)and proposes an occlusion-proof extended kalman filter(EKF).By employing a UWB/INS tightly coupled model and introducing an information loss coefficient,the fusion weight of every single UWB measurement can be modified dynamically.Thus,while harmful measurements are insulated from the system,UWB information can be fully utilized.Experimental results conducted in a navigation laboratory demonstrate that the proposed method reduces positioning errors caused by random obstructions by 17.21%compared to conventional approaches.
出处
《工业控制计算机》
2024年第11期19-20,23,共3页
Industrial Control Computer
关键词
室内定位
数据融合
卡尔曼滤波
抗遮挡
indoor localization
data fusion
Kalman filter
obstruction-proof