期刊文献+

基于LSTM和CRF的加工过程运行状态识别

Process Status Recognition Based on LSTM and CRF
下载PDF
导出
摘要 针对加工过程中时序信号截取成本高和运行状态自动识别困难的问题,提出一种结合双向循环神经网络BiLSTM和条件随机场(CRF)的加工过程信号状态识别模型,适用于变参数加工场景。采用LSTM来捕捉时间序列数据的前后依赖性关系,并利用该网络对振动信号进行深层特征提取。在此基础上,为了进一步捕捉状态数据,将LSTM的输出特征输入至条件随机场(CRF)模型和多层感知机(MLP)中进行边界帧分类,进行预测并输出结果标签序列。最后以变参数下的铣削实验为例,验证了基于BiLSTM-CRF的信号状态识别模型在复杂变参数场景下的有效性。 In view of the high cost of timing signal interception and the difficulty of automatic identification of operating status during processing,a sequential signal status recognition model combining bidirectional recurrent neural network BiLSTM(bi-directional long-short term memory)and conditional random field(CRF)was proposed,which was suitable for variable parameter machining scenarios.LSTM was used to capture the dependency relationship of time series data,and the deep feature extraction of vibration signals was carried out by this network.On this basis,in order to further capture status data,the output features of LSTM were input into the conditional random field(CRF)model and multi-layer perceptron(MLP)for boundary frame classification,prediction and output of the result label sequence.Finally,taking the milling experiment under variable parameters as an example,the validity of the signal status recognition model based on BiLSTM-CRF in complex variable parameter scenarios was verified.
作者 吴家奎 周焮钊 李浩亮 陈文平 李雄伟 WU Jiakui;ZHOU Xinzhao;LI Haoliang;CHEN Wenping;LI Xiongwei(Engineering Department,Dongfang Electric Group Dongfang Motor Co.,Ltd.,Deyang Sichuan 618000,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan Hubei 430000,China)
出处 《机床与液压》 北大核心 2024年第21期162-167,共6页 Machine Tool & Hydraulics
基金 湖北省重点研发计划项目(2020BAB106) 东方电机有限公司横向项目(7600005875)。
关键词 加工过程运行状态识别 时序信号 序列识别 LSTM-CRF process status recognition sequential signal sequence recognition LSTM-CRF
  • 相关文献

参考文献3

二级参考文献16

  • 1GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 2HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 3KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 4BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 5WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 6BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 7ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 9JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.
  • 10LEI Yaguo, ZUO M J. Gear crack level identification based on weighted K nearest neighbor classification algorithm[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1535-1547.

共引文献355

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部