期刊文献+

基于PCA加权及模糊聚类的设备运行监测模型

Equipment Operation Monitoring Model Based on PCA Weighting and Fuzzy Clustering
下载PDF
导出
摘要 设计一种新的模型,根据电厂设备的运行参数为其赋分,判断其健康状态。首先运用主成分分析法计算各运行参数在判断设备健康状态时所占的权重,然后通过加权欧式距离法进行模糊均值聚类,建立设备健康诊断模型,计算设备的健康得分。测试结果表明,通过该模型计算得到的设备状态与实际情况高度吻合,能准确表征设备状态,并对设备的异常状态提前发出报警。 A new model is designed to assign scores to power plant equipment based on its operating parameters to assess its state of health.Firstly,the principal component analysis method is applied to calculate the weight of each operating parameter in deter⁃mining the equipment's health condition.Then,fuzzy C-means clustering is performed using the weighted Euclidean distance method to establish an equipment health diagnosis model,which can calculate the health score of the equipment.Test results have shown that the equipment condition calculated by this model highly corresponds with the actual condition,accurately representing the equipment status,and providing early warnings for abnormal equipment conditions.
作者 贡兴野 GONG Xingye(Guoneng Zhejiang Ninghai Power Generation Co.,Ltd.,Ningbo 315612,China)
出处 《山东电力高等专科学校学报》 2024年第5期1-4,9,共5页 Journal of Shandong Electric Power College
关键词 主成分分析 加权 聚类 状态监测 principal component analysis weighting clustering condition monitoring
  • 相关文献

参考文献11

二级参考文献92

共引文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部