期刊文献+

Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic andosteogenic niches in osteoporosis

原文传递
导出
摘要 Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite thedevelopment of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their lowbioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. Thiscalls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybridstructures with bioactive components and stable fluffy topological morphology by cross-linking calcium andphosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequentgrafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealedthat these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecularmechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that smalldoseAL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivoresults restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as theconsequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant withpeculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well asbone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies forother bone diseases.
出处 《Bioactive Materials》 SCIE CSCD 2024年第9期354-374,共21页 生物活性材料(英文)
基金 National Natural Science Foundation of China 82172233(X.Y.) Shanghai Baoshan District Science and Technology Commission medical health project 21-E-52(B.F.).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部