期刊文献+

Seasonal dynamics of airborne biomolecules influence the size distribution of Arctic aerosols

原文传递
导出
摘要 Organic matter is crucial in aerosol-climate interactions,yet the physicochemical properties and origins of organic aerosols remain poorly understood.Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer,emphasizing their connection to transport patterns and particle size distribution.Microbial-derived organic matter(MOM)and terrestrial-derived organic matter(TOM)accounted for over 90%of the total organic mass in Arctic aerosols during these seasons,comprising carbohydrate/protein-like and lignin/tannin-like compounds,respectively.In spring,aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic.In contrast,summer exhibited elevated MOM intensity,attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea.MOM and TOM were associated with Aitken mode particles(<100 nm diameter)and accumulation mode particles(>100 nm diameter),respectively.This association is linked to the molecular size of biomolecules,impacting the number concentrations of corresponding aerosol classes.These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.
出处 《Environmental Science and Ecotechnology》 SCIE 2024年第6期245-255,共11页 环境科学与生态技术(英文)
基金 National Research Foundation(NRF)of Korea NRF-2021M1A5A1065425(KOPRI-PN24011) The FT-ICR MS analysis was supported by the Korea Basic Science Institute under the R&D program(Project No.C330430)supervised by the Ministry of Science and ICT.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部