期刊文献+

Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli

原文传递
导出
摘要 The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics,and there is growing evidence suggesting that global warming may speed up this process.However,the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood.Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics.We find that the effectiveness of gatifloxacin against Escherichia coli significantly diminishes at 42°C,while resistance increases 256-fold at 27°C.Additionally,the increased transcription levels of genes such as marA,ygfA,and ibpB with rising temperatures,along with gene mutations at different sites,explain the observed variability in resistance patterns.These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.
出处 《Environmental Science and Ecotechnology》 SCIE 2024年第6期339-343,共5页 环境科学与生态技术(英文)
基金 National Natural Science Foundation of China(U2005206) National Key R&D Program of China(2023YFE0112100).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部