期刊文献+

融合随机傅里叶特征的混合神经网络模型

Hybrid Neural Network Model Based on Random Fourier Features
下载PDF
导出
摘要 深度神经网络模型作为目前最成功的学习模型之一,在模型训练时涉及大量的参数学习,特别对于较大规模的样本存在特征处理困难、模型结构复杂等问题.线性或亚线性时间复杂度的核近似算法具有计算开销小、易于扩展到大规模数据的优点.因此,利用线性核近似算法可以进行特征处理并降低深度神经网络模型的结构复杂程度.本文提出一种基于傅里叶特征空间的混合神经网络模型优化方法,并由此构建一个混合深度神经网络模型.该模型将基于随机傅里叶特征变换的浅层网络与卷积神经网络相结合,傅里叶层进行数据特征处理与提取的同时,降低混合网络模型的结构复杂程度,优化深度神经网络模型结构.实验结果表明本文提出的模型拥有较少的参数量和较低的浮点计算量,同时模型可保持较高的测试准确率以及更快的收敛效率. As one of the most successful learning models at present,the deep neural network model involves a lot of parameter learning in model training,especially in large-scale samples with difficulties in feature processing and complex model structure.Kernel approximation algorithms with linear or sublinear time complexity have the advantages of low computational overhead and easy expansion to large-scale data.Therefore,linear kernel approximation algorithms can be used for feature processing and reduce the structure complexity of deep neural network models.This paper presents a hybrid neural network model optimization method based on Fourier feature space,from which a hybrid depth neural network model is constructed.The model combines shallow network based on random Fourier feature transformation with convolution neural network.The Fourier layer performs data feature processing and extraction while reducing the structure complexity of the hybrid network model and optimizing the structure of the deep neural network model.The experimental results show that the proposed model has fewer parameters and lower floating-point computation,while maintaining a high test accuracy and faster convergence efficiency.
作者 支凯茹 张凯 门昌骞 王文剑 ZHI Kairu;ZHANG Kai;MEN Changqian;WANG Wenjian(College of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing,Shanxi University,Ministry of Education,Taiyuan 030006,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2875-2881,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(U21A20513,62076154)资助 中央引导地方科技发展项目(YDZX20201400001224)资助 山西省自然科学基金项目(201901D111030)资助。
关键词 核近似 随机傅里叶特征 模型优化 混合神经网络 kernel approximation random Fourier feature model optimization hybrid neural network
  • 相关文献

参考文献4

二级参考文献31

  • 1Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 2Cristianini N, Shawe- Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [M]. Cambridge, UK: Cambridge University Press, 2000.
  • 3Zhang Tong. Solving large scale linear prediction problems using stochastic gradient descent algorithms [C] //Proc of the 21st Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2004: 16-123.
  • 4Shalev-Shwartz S, Singe y, Srebro N, et a1. Pegasos , primal estimated sub-gradient solver for SVM [J]. Mathematical Programming, 2011, 127(1): 3-30.
  • 5Joachims T. Training linear SVMs in linear time [C] //Proc of the 12th ACM Conf on Knowledge Discovery and Data Mining. New York: ACM: 2006: 217-226.
  • 6Smola A, Vishwanathan S, Le Q. Bundle methods for machine learning [C] I I Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press, 2008: 1377-1384.
  • 7Lin C 1, Weng R C, Keerthi S. Trust region newton method for large-scale logistic regression [J]. Journal of Machine Learning Research, 2008, 9: 627-650.
  • 8Chang K W, Hsieh C J, Lin C J. Coordinate descent method for large-scale L2-10ss linear Support Vector Machines [J]. Journal of Machine Learning Research, 2008, 9: 1369-1398.
  • 9Hsieh C J, Chang K W, Lin C J. A dual coordinate descent method for Large-scale linearSVM [C] //Proc of the 25th Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2008: 408-415.
  • 10Yu H F, Huang F L, Lin C J. Dual coordinate descent methods for logistic regression and maximum entropy models [J]. Machine Learning, 2011, 85(1/2): 41-75.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部