期刊文献+

个性化语义敏感轨迹数据发布算法

Personalized Semantic Sensitive Trajectory Data Publishing Algorithm
下载PDF
导出
摘要 对于离线时用户轨迹发布方案中,大多都是将轨迹数据全部进行处理,通过添加噪声来满足差分隐私,缺少用户个性化的情况,导致数据可用性较低,且较少考虑位置点的语义信息.综合考虑上述情况,设计了一种个性化的语义敏感轨迹发布算法TSDP.该方案在进行发布时收集用户的语义敏感情况,且统计用户轨迹中频繁到访的语义位置点,同样考虑因时间段的不同而对敏感度得到影响,对其添加符合差分隐私的噪声.实验结果表明,与其他差分隐私保护方法相比,该方法在保证隐私的情况下,最大化了发布数据的可用性. For offline user track publishing schemes,most of them process all track data,and add noise to meet differential privacy.The lack of user personalization leads to low data availability and less consideration of Semantic information of location points.Taking into account the above situation,a personalized semantic sensitive trajectory publishing algorithm TSDP has been designed.This scheme collects users′semantic sensitivity during publishing,and counts the frequently visited semantic location points in user trajectories.It also considers the impact on sensitivity due to different time periods,and adds noise that conforms to differential privacy.The experimental results show that compared with other differential privacy protection methods,this method maximizes the availability of published data while ensuring privacy.
作者 雷诚 张琳 焦泽鑫 LEI Cheng;ZHANG Lin;JIAO Zexin(College of Computer,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2024年第12期3002-3007,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61872196,61872194)资助 江苏省科技支撑计划基金项目(BE2017166)资助 南京邮电大学校级自然科学基金项目(NY222142)资助。
关键词 基于位置服务 位置隐私 轨迹数据发布 差分隐私 location-based services location privacy trajectory data publishing differential privacy
  • 相关文献

参考文献4

二级参考文献48

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Gruteser M, Grunwald D. Anonymous usage of locationbased services through spatial and temporal cloaking//Proceedings of the 1st International Conference on Mobile Sys tems, Applications, and Services (MobiSys 2003). San Fransisco, 2003: 31 -42.
  • 3Mokbel M F, Chow C Y, Aref W G. The newcasper: Query processing for location services withoutcompromising privacy//Proceedings of the 32nd Conference of Very Large Databases (VLDB 2006). Seoul, 2006: 763-774.
  • 4Bamba B, Liu L. Supporting anonymous location queries in mobile environments with privacy grid//Proceeding of the 17th International Conference on World Wide Web (WWW 2008). Beijing, 2008:237-246.
  • 5Pan X, Meng X, Xu J. Distortion-based anonymity for continuous queries in location-based mobile services//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS 2009). Washington, 2009:256-265.
  • 6Krumm J. A survey of computational location privacy. Personal and Ubiquitous Computing, 2009, 13(6): 391-399.
  • 7Bettini C, Wang S X, Jajodia S. Protecting privacy against location-based personal identification//Proceedings of the 2nd VLDB workshop on Secure Data Management (SDM2005). Trondheim, 2005:185-199.
  • 8Krumm J. Inference attacks on location tracks//Proceedings of the 5th International Conference on Pervasive Computing (PERVASIVE 2007). Toronto, 2007:127-143.
  • 9Luper D, Cameron D, Miller J A, Arabnia H R. Spatial and temporal target association through semantic analysis and GPS data mining//Proceedings of the 2007 International Conference on Information & Knowledge Engineering (IKE 2007). LasVegas, 2007:251-257.
  • 10Xu T, Cai Y. Exploring historical location data for anonymity preservation in location-based services//Proceedings of the 27th Conference on Computer Communications (INFOCOM 2008). Phoenix, 2008:547-555.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部