期刊文献+

基于注意力机制与多源信息融合的变工况轴承故障诊断

Attention mechanism and multi-source information fusion-based method for bearing fault diagnosis under variable operating conditions
下载PDF
导出
摘要 针对轴承在变工况下工作时受环境噪声和工况变化的干扰,现有的基于单源信号的轴承故障诊断方法因单源信号难以提供全面且稳定的故障信息,导致诊断效果不理想的问题,提出一种基于注意力机制的多源信息融合网络模型(MSIFNM)。该模型的多尺度特征提取模块可以提取更充足的故障特征信息;双阶段注意力模块从多个维度增强对工况变化不敏感的故障特征;多源信息特征加权模块根据不同传感器信号对不同故障的敏感程度,自适应地对多源信息进行权重分配;特征融合与类别输出模块实现对加权后的特征进一步融合与特征提取,再经全连接层和Softmax层输出分类结果。采用变转速和变负载轴承故障数据集对本文所提的MSIFNM模型进行实验验证,实验结果表明,MSIFNM可以有效实现多源信息融合特征提取,提高变工况条件下轴承故障诊断的准确性、稳定性和工况自适应性。 When bearings operate under variable conditions,they are affected by environmental noise and fluctuations in operating parameters.Existing bearing fault diagnosis methods relying on single-source signals struggle in these situations because such signals often fail to provide comprehensive and stable fault information.To address this issue,this paper proposes a multi-source information fusion network model(MSIFNM)based on an attention mechanism.The model′s multi-scale feature extraction module captures more detailed fault features,while the two-stage attention module enhances features that are less sensitive to changes in operating conditions.The multi-source information feature weighting module adaptively assigns weights to the features based on their sensitivity to faults.The feature fusion and classification output module further integrates these weighted features and delivers classification results through fully connected and softmax layers.To validate the effectiveness of the proposed MSIFNM model,bearing datasets under variable speed and load conditions were used.Experimental results demonstrate that the MSIFNM model significantly improves the accuracy,stability,and adaptability of bearing fault diagnosis under variable operating conditions.
作者 乔卉卉 赵二贤 郝如江 李东升 王勇超 Qiao Huihui;Zhao Erxian;Hao Rujiang;Li Dongsheng;Wang Yongchao(School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;China Railway 14th Bureau Group Equipment Corporation Limited,Nantong 226000,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第9期120-130,共11页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金项目(12202287) 河北省高等学校科学技术研究项目(QN2022141) 中铁十四局集团装备有限公司科研项目(CRCC14-ZB-KYHT-2023-002) 河北省市场监督管理局科研计划项目(2023ZC24)资助。
关键词 变工况轴承故障诊断 多源信息融合 注意力机制 卷积神经网络 bearing fault diagnosis under variable operating conditions multi-source information fusion attention mechanism convolutional neural network
  • 相关文献

参考文献7

二级参考文献71

共引文献640

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部