期刊文献+

基于高速公路场景的换道驾驶行为研究

Highway lane-changing behavior:a data-driven analysis of driver intentions
下载PDF
导出
摘要 深入研究人类驾驶员的驾驶行为和习性,对于推进智能汽车的拟人化决策规划,改善驾驶安全性具有重要意义。针对高速公路这一典型场景,基于NGSIM(Next Generation Simulation)数据集提取有效表征换道驾驶行为的特征参数,分析换道驾驶行为与驾驶参数的相关性,量化驾驶行为特性,建立了基于高斯混合-隐马尔科夫理论(Gaussian mixed model-hidden Markov model,GMM-HMM)的换道意图识别模型。研究结果表明:该模型识别准确率较高,在换道点1.0 s之前的换道行为识别准确率达到95.6%,在有换道意图的时刻识别准确率超过80%,可应用于智能汽车换道策略的拟人化设计,有效降低换道风险,改善驾驶安全。 Understanding human driving behaviors has significant implications for promoting decision-making in intelligent vehicles and improving driving safety.This study focuses on highway lane-changing behavior,using the NGSIM(Next Generation Simulation)Dataset to extract key parameters and analyze the correlation between these parameters and driving behaviors.A GMM-HMM-based model for lane-changing intention recognition was developed,achieving an accuracy of 95.6%in predicting lane changes 1.0 s before they occur,and an accuracy of over 80%in recognizing lane-changing intentions.This model can be applied to intelligent vehicle design to effectively reduce lane-changing risks and improve driving safety.
作者 杨崇辉 郑玲 左益芳 王勘 曾杰 丁雪聪 YANG Chonghui;ZHENG Ling;ZUO Yifang;WANG Kan;ZENG Jie;DING Xuecong(State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,P.R.China;China Merchants Testing Vehicle Technology Research Institute Co.,Ltd.,Chongqing 400067,P.R.China)
出处 《重庆大学学报》 CAS CSCD 北大核心 2024年第11期37-50,共14页 Journal of Chongqing University
基金 国家自然科学基金资助项目(51875061)。
关键词 驾驶员特性 换道行为分析 NGSIM 驾驶安全 driver characteristics lane-changing behavior analysis NGSIM(Next Generation Simulation) driving safety
  • 相关文献

参考文献2

二级参考文献16

  • 1王荣本,游峰,崔高健,余天宏.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):179-182. 被引量:40
  • 2Ahmed KI. Modeling drivers’acceleration and lane changing behavior[D]. Massachusetts Institute of Technology, 1999.
  • 3Zhang Y, Owen L E, Clark J E. A Multi- regime approach for microscopic traffic simulation[C]. Transportation Research Board 77th Annual Meeting. Washington, D. C: Transportation Research Board, 1998: 103-115.
  • 4Wei H, Lee J. Observation-based lane-vehicleassignment hierarchy for microscopic simulation on an urban street network[C]. Transportation Research Board 79th Annual Meeting. Washington , D. C: Transportation Research Board, 2000: 96-103.
  • 5Tomer T. Integrated driving behavior modeling[D]. Cambridge, MA: Massachusetts Institute of Technology, 2003: 18-43.
  • 6Yang Q, Koutsopoulos H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
  • 7Hidas P. Modeling vehicle interactions in microscopic simulation of merging and weaving and weavin[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62.
  • 8Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112.
  • 9Kita H. Effects of merging lane length on the merging behavior at expressway on-ramps[J]. Transportation and Traffic Theory, 1993.
  • 10Meng Q, Weng J. Cellular automata model for work zone traffic[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2188(1): 131- 139.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部