摘要
用于惯性约束聚变诊断的传统微通道板(microchannel plate,MCP)选通分幅相机存在体积大、非单视线成像等问题,可用时间分辨率为百皮秒的CMOS芯片代替MCP变像管,将分幅相机芯片化并实现单视线成像。提出了具有8×8×4像素阵列的单视线四分幅超快成像CMOS电路,并对其性能进行了模拟仿真。基于0.18μm标准CMOS工艺、5晶体管(5T)像素单元结构,设计了四分幅像素单元电路、电压控制延迟器、时钟树以及行列选通电路等。对CMOS电路像素信号进行选通输出并分析,仿真结果表明该CMOS电路可实现单次四分幅成像,每幅图像的时间分辨率为100 ps,相邻两幅图像之间的时间间隔为300 ps,四幅图像像素信号均匀性优于90%。
There are several issues with traditional microchannel plate(MCP)gated framing cameras used for inertial confinement fusion diagnostic,such as large volume,incapable single line-of-sight(SLOS),and so on.The MCP can be instead by a CMOS chips with time resolution of picosecond-scale to achieve the image with SLOS.This paper presents a SLOS four-frame picosecond CMOS circuit consisting of 8×8×4 pixel arrays,and its performance is simulated.The CMOS circuit includes the design of unit pixel which contains four-frame,delay and control circuitry,binary clock tree,circuitry of row and column selector by using 0.18μm CMOS process and 5T(5 transistors)unit pixel.The signals in the pixel array of the CMOS circuit are analyzed,ans the simulation results show that the CMOS circuit has the capability to obtain four images with a single exposure.The temporal resolution is 100 ps,the interval between two adjacent images is 300 ps,and the uniformity of intra-pixel signals is better than 90%.
作者
蔡厚智
黄晓雅
杨恺知
马友麟
解朝阳
刘进元
向利娟
Cai Houzhi;Huang Xiaoya;Yang Kaizhi;Ma Youlin;Xie Zhaoyang;Liu Jinyuan;Xiang Lijuan(College of Physics and Optoelectronic Engineering,Shenzhen University,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Shenzhen Key Laboratory of Photonics and Biophotonics,Shenzhen 518060,China)
出处
《强激光与粒子束》
CAS
CSCD
北大核心
2024年第12期29-35,共7页
High Power Laser and Particle Beams
基金
国家自然科学基金项目(62001301)
广东省基础与应用基础研究基金项目(2024A1515011832)
深圳市科技计划项目(JCYJ20230808105019039,JCYJ20210324095007020,JCYJ20220814133504001)
深圳市光子学与生物光子学重点实验室项目(ZDSYS20210623092006020)
深圳大学2035追求卓越研究计划项目(2023C007)
深圳大学高层次人才引育项目(000001032080)。
关键词
CMOS电路
惯性约束聚变
超快诊断
分幅成像
CMOS circuit
inertial confinement fusion
ultrafast diagnosis
framing imaging