期刊文献+

Shell stand:Stable thin shell models for 3D fabrication

原文传递
导出
摘要 A thin shell model refers to a surface or structure,where the object’s thickness is considered negligible.In the context of 3D printing,thin shell models are characterized by having lightweight,hollow structures,and reduced material usage.Their versatility and visual appeal make them popular in various fields,such as cloth simulation,character skinning,and for thin-walled structures like leaves,paper,or metal sheets.Nevertheless,optimization of thin shell models without external support remains a challenge due to their minimal interior operational space.For the same reasons,hollowing methods are also unsuitable for this task.In fact,thin shell modulation methods are required to preserve the visual appearance of a two-sided surface which further constrain the problem space.In this paper,we introduce a new visual disparity metric tailored for shell models,integrating local details and global shape attributes in terms of visual perception.Our method modulates thin shell models using global deformations and local thickening while accounting for visual saliency,stability,and structural integrity.Thereby,thin shell models such as bas-reliefs,hollow shapes,and cloth can be stabilized to stand in arbitrary orientations,making them ideal for 3D printing.
出处 《Computational Visual Media》 SCIE EI CSCD 2024年第4期643-657,共15页 计算可视媒体(英文版)
基金 supported by Grant No.61972232 from the National Natural Science Foundation of China(NSFC) by Grant No.2020ZLYS01 of the Key Research and Development Plan of Shandong Province of China.
  • 相关文献

参考文献2

二级参考文献1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部