摘要
为了提高新能源汽车监控数据的质量,提出了一种系统性的异常数据识别与质量评估方案。针对监控数据中的多种异常情况,设计了从数据收集到解析后的全面评估流程。该流程涵盖了数据规范、完整性、准确性、一致性和时效性等关键维度,并采用层次分析法与熵权法相结合的方式计算各维度权重。通过模糊综合评价方法,量化数据质量评分,避免了单一主观或客观因素对评估结果的影响。实证分析表明,该方案能够全面识别新能源汽车数据中的异常类型,并提供合理的质量评价结果。
To improve the quality of new energy vehicle monitoring data,a systematic abnormal data identification and quality evaluation scheme is proposed.The scheme addresses various abnormal situations in the monitoring data and designs a comprehensive evaluation process from data collection to data analysis.This process covers key dimensions such as data standardization,completeness,accuracy,consistency,and timeliness.The weights of each dimension are calculated using a combination of the Analytic Hierarchy Process(AHP)and the entropy weight method.Through the fuzzy comprehensive evaluation method,the data quality score is quantified,avoiding the influence of single subjective or objective factors on the evaluation results.Empirical analysis shows that this scheme can comprehensively identify abnormal data types in new energy vehicle monitoring and provide reasonable quality evaluation results.
作者
郝雄博
蔡君同
谭新治
何山
李昊巍
Hao Xiongbo;Cai Juntong;Tan Xinzhi;He Shan;Li Haowei(Automotive Data of China(Tianjin)Co.,Ltd.,Tianjin 300300;Shenzhen Power Supply Co.,Ltd.,Shenzhen 518000;China Academy of Industrial Internet,Beijing 100000)
出处
《汽车文摘》
2024年第12期1-7,共7页
Automotive Digest
基金
规模化电动汽车与电网互动关键技术研究与示范应用(一期)项目(090000KK52210132)。
关键词
新能源汽车
数据异常识别
数据评价
熵权法
New energy vehicles
Identification of abnormal data
Data evaluation
Entropy weight method