期刊文献+

基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析

Analysis of spatiotemporal evolution characteristics of typical landslides in the Jinsha River Basin based on SBAS-InSAR technology
下载PDF
导出
摘要 金沙江流域属于高山峡谷区,地质地貌复杂,峡谷众多、地势陡峭及大量的降雨导致滑坡灾害频发,对人类安全、生产和环境等方面造成了严重影响。然而,常规测量方法存在成本高、周期长、空间分辨率不足等缺陷,难以全面反映滑坡演化特征。因此,本文利用SBAS-InSAR技术结合升降轨Sentinel-1A数据获取金沙江流域阿海库区2019年1月—2020年12月的地表形变信息,并选取里故、白亚及罗子如3个典型滑坡进行时空演化特征分析。研究结果表明,SBAS-InSAR技术能有效识别出高山峡谷区典型滑坡。在监测期间,里故滑坡最大形变速率为-68 mm/a,累计形变量为-148 mm,整体从形变中心向西朝金沙江呈条状扩散。白亚滑坡最大形变速率为-40 mm/a,累计形变量为-77 mm。罗子如滑坡最大形变速率为-90 mm/a,累计形变量达-260 mm。 The Jinsha River Basin belongs to the high mountain canyon area,with complex geological and geomorphological features.The numerous canyons,steep terrain,and a large amount of rainfall have led to frequent landslide disasters,which have caused serious impacts on human safety,production,and the environment.However,conventional measurement methods have drawbacks such as high cost,long cycle,and insufficient spatial resolution,making it difficult to fully reflect the evolution characteristics of landslides.Therefore,this article uses SBAS-InSAR technology combined with Sentinel-1A data from the lifting track to obtain surface deformation information of the Ahai Reservoir area in the Jinsha River Basin from January 2019 to December 2020.Three typical landslides,namely Ligu,Baiya,and Luoziru,are selected for spatiotemporal evolution characteristics analysis.The research results indicate that SBAS-InSAR technology can effectively identify typical landslides in high mountain canyon areas.During the monitoring period,the maximum deformation rate of the Li Gu landslide is-68 mm/a,and the cumulative deformation variable is-148 mm.The overall spread from the deformation center to the west towards the Jinsha River is in a strip shape.The maximum deformation rate of Baiya landslide is-40 mm/a,and the cumulative deformation variable is-77 mm.The maximum deformation rate of Luoziru landslide is-90 mm/a,and the cumulative deformation reaches-260 mm.
作者 杨芳 丁仁军 李勇发 YANG Fang;DING Renjun;LI Yongfa(Kunming Institute of Surveying and Mapping,Kunming 650051,China;Kunming University of Science and Technology,Kunming 650051,China)
出处 《测绘通报》 CSCD 北大核心 2024年第11期102-107,共6页 Bulletin of Surveying and Mapping
基金 云南省基础研究计划项目(202401AU070173) 云南省教育厅科学研究基金(2024J0067)。
关键词 SBAS-InSAR技术 高山峡谷区 金沙江流域 典型滑坡 SBAS InSAR technology high mountain canyon area Jinsha River Basin typical landslide
  • 相关文献

参考文献15

二级参考文献121

共引文献1038

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部