期刊文献+

基于LSTM的电力网络恶意流量攻击检测研究

Research on Malicious Traffic Attack Detection in Power Networks Based on LSTM
下载PDF
导出
摘要 随着物理电网与网络的深度融合,电网系统越来越容易受到网络攻击的威胁,其中包括恶意流量攻击。这类攻击通过网络传播恶意流量,可能导致智能电网出现通信故障,因此及时准确地检测此类攻击对电力企业至关重要。本文提出了一种基于长短期记忆(long short-term memory,LSTM)深度学习模型的实时恶意流量攻击检测方法。该方法通过实时采集网络流量并提取关键特征,利用LSTM模型识别网络流量的性质,以判断网络是否遭受攻击。此外,在软件定义网络(software-defined networking,SDN)架构下构建了一个相应的原型系统。原型系统实验结果显示,该方法能有效抵御实际网络中的恶意流量攻击,提高了电网的网络安全。 With the deep integration of the physical power grid and cyber networks,the smart grid faces a variety of cyber attacks,including malicious traffic attacks.By blindly forwarding malicious traffic,these attacks could cause communication failures in the smart grid.Therefore,it is crucial to detect such attacks promptly and accurately for power enterprise operations.In this paper,we propose a real-time malicious traffic attack detection method based on the Long Short-Term Memory(LSTM)deep learning model.By collecting network traffic in real time and extracting key features,our proposed method can determine whether the network is under attack using the LSTM model.Furthermore,a corresponding prototype system was constructed under the Software-Defined Networking(SDN)architecture.The experimental results from the prototype system demonstrate its effectiveness in defending against malicious traffic attacks in actual networks,thereby enhancing the cybersecurity of the power grid.
作者 王俊峰 陈亮 景峰 李军 阮伟 WANG Junfeng;CHEN Liang;JING Feng;LI Jun;RUAN Wei(Zhejiang Huayun Information and Technology Co.,Ltd.of Zhejiang University,Hangzhou 310058,Zhejiang,China)
出处 《电力大数据》 2024年第8期1-8,共8页 Power Systems and Big Data
基金 浙江省“尖兵”“领雁”研发攻关计划(2022C01239)。
关键词 智能电网 网络安全 恶意流量攻击检测 人工智能 机器学习 长短期记忆网络(LSTM) 软件定义网络(SDN) smart grid cyber security malicious traffic attack detection artificial intelligence machine learning LSTM SDN
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部