期刊文献+

基于深度学习算法的超声TOFD图像焊缝缺陷识别

Weld defect recognition in ultrasonic TOFD image based on depth learning algorithm
下载PDF
导出
摘要 【目的】针对传统焊缝缺陷检测中人工效率低、检测难度大和漏检率高等问题,基于试验模拟与深度学习算法提出了一种面向TOFD D扫图像的缺陷识别方法。【方法】通过室内试验对不同类型的对接焊接缺陷(夹渣、裂纹、未焊透、气孔和未熔合)进行了模拟,利用不同数据增强方法构建了实际TOFD检测数据特征图库,结合YOLOv5深度学习网络结构进行TOFD D图像数据集的训练与检测,提升模型对焊接缺陷的识别性能,并且自动输出缺陷智能检测结果。【结果】试验结果表明,该方法具备优越的模型泛化能力,当IoU阈值设定为0.5时,模型训练的准确率可达到98.05%;针对5种焊接缺陷类型,在识别时的分类置信度均超过95%,有效提升了焊接缺陷识别的效率,可满足实际场景在线识别要求。【结论】提出的焊接缺陷识别方法具有较高的准确性,可广泛用于不同缺陷检测模型的构建,为焊接质量控制提供了有效的技术支持。 [Objective]Addressing the issues of low manual efficiency,high detection difficulty,and high missed detection rates in traditional weld defect detection,this study proposes a defect recognition method for TOFD D-scan images based on experimental simulation and deep learning algorithms.[Methods]Different types of butt weld defects(slag inclusions,cracks,lack of penetration,porosity,and lack of fusion)are simulated through indoor experiments.A feature image library of actual TOFD detection data is conducted by various data augmentation methods.TOFD D-scan image datasets are trained and detected by the YOLOv5 deep learning network structure to enhance the model’s capability to recognize weld defects and automatically output intelligent detection results.[Results]The experimental results indicate that this method possesses excellent model generalization ability,achieving an accuracy of 98.05%with an IoU threshold of 0.5.For five types of welding defects,the classification confidence during recognition exceeds 95%,significantly improving the efficiency of weld defect recognition and meeting the requirements for online recognition in practical scenarios.[Conclusion]The proposed weld defect recognition method demonstrates high accuracy and can be widely used for constructing various defect detection models,providing effective technical support for welding quality control.
作者 胡伟 阮先虎 金明东 刘朵 张建东 Hu Wei;Ruan Xianhu;Jin Mingdong;Liu Duo;Zhang Jiandong(Nantong Port and Shipping Development Center,Nantong 210019,Jiangsu,China;State Key Laboratory of Safety,Durability and Healthy Operation of Long Span Bridges,JSTI Group Co.,Ltd.,Nanjing 211112,China;Nanjing Technology University,Nanjing 211816,China)
出处 《焊接》 2024年第10期55-60,共6页 Welding & Joining
基金 江苏省交通运输科技与成果转化项目(2023Y20) 江苏省交通运输重点科技项目(2022QD11)。
关键词 缺陷识别 TOFD YOLOv5 深度学习 defect recognition TOFD YOLOv5 deep learning
  • 相关文献

参考文献8

二级参考文献55

  • 1黄会强,车平,裴雪峰,张剑峰,黄河珍,高正稳.我国桥梁钢结构焊接技术发展现状及展望[J].焊接技术,2019,0(S02):60-63. 被引量:15
  • 2迟大钊,刚铁,袁媛,吕品.面状缺陷超声TOFD法信号和图像的特征与识别[J].焊接学报,2005,26(11):1-4. 被引量:25
  • 3奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 4陈天璐,阙沛文.基于超声衍射反射回波渡越时间的缺陷识别技术[J].化工自动化及仪表,2006,33(4):50-52. 被引量:6
  • 5Kechida A, Drai R, Guessoum A. Texture analysis for flaw detection in ultrasonic images [ J ]. Journal of Nondestructive Evalu- ation, 2012,31 (2) : 108 - 116.
  • 6Liao X J, Runkle P, Carin L. Identification of ground targets from sequential high - range - resolution radar signatures [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 3g(4) : 1 230 -1 242.
  • 7Manikandan J, Venkataramani B. Design of a modified one - against - all SVM classifier [ C ]//Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. San Antonio : [ s. n. ], 2009 : 1 869 - 1 874.
  • 8人工神经网络实用教程[M]. 浙江大学出版社, 2001.人工神经网络实用教程[M]浙江大学出版社,2001.
  • 9Bernhard Scholkopf,Alexander Smola,Klaus Robert Muller.Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation . 1998
  • 10Gang T,,Chi D Z.Novel approach to the enhancement of ultrason-ic TOFD B-scan image for the measurement of weld crack. Science and Technology of Welding and Joining . 2007

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部